target plasma concentration
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Sarah M. Ozawa ◽  
David Sanchez-Migallon Guzman ◽  
Michelle G. Hawkins ◽  
Stephanie M. Diao ◽  
Acacia E. Masri ◽  
...  

Abstract OBJECTIVE To determine the pharmacokinetics and potential adverse effects of pimobendan after oral administration in New Zealand White rabbits (Ocytolagus cuniculi). ANIMALS 10 adult sexually intact (5 males and 5 females) rabbits. PROCEDURES 2 pilot studies were performed with a pimobendan suspension or oral tablets. Eight rabbits received 7.5 mg of pimobendan (mean 2.08 mg/kg) suspended in a critical care feeding formula. Plasma concentrations of pimobendan and O-demethylpimobendan (ODMP) were measured, and pharmacokinetic parameters were calculated for pimobendan by noncompartmental analysis. Body weight, food and water consumption, mentation, urine, and fecal output were monitored. RESULTS Mean ± SD maximum concentration following pimobendan administration was 15.7 ± 7.54 ng/mL and was detected at 2.79 ± 1.25 hours. The half-life was 3.54 ± 1.32 hours. Plasma concentrations of pimobendan were detectable for up to 24 hours. The active metabolite, ODMP, was detected in rabbits for 24 to 36 hours. An adverse event occurred following administration of pimobendan in tablet form in 1 pilot study, resulting in death secondary to aspiration. No other adverse events occurred. CLINICAL RELEVANCE Plasma concentrations of pimobendan were lower than previously reported for dogs and cats, despite administration of higher doses, and had longer time to maximum concentration and half-life. Based on this study, 2 mg/kg of pimobendan in a critical care feeding formulation should maintain above a target plasma concentration for 12 to 24 hours. However, further studies evaluating multiple-dose administration as well as pharmacodynamic studies and clinical trials in rabbits with congestive heart failure are needed to determine accurate dose and frequency recommendations.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 477
Author(s):  
Andy R. Eugene

Background.  Recent in vitro studies have shown fluoxetine inhibits the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen, including variants B.1.1.7 and B.1.351, SARS-CoV-2 spike mutations (E484K, K417N, N501Y), and one retrospective clinical study reported fluoxetine exposure at a median dose of 20 mg in patients with the SARS-CoV-2 coronavirus disease 2019 (COVID-19) had a significantly lower risk of intubation and death. The aim of this study is to conduct in silico population pharmacokinetic dosing simulations to quantify the percentage of patients achieving a trough level for the effective concentration resulting in 90% inhibition (EC90) of SARS-CoV-2 as reported in Calu-3 human lung cells.  Methods.  Population pharmacokinetic parameter estimates for a structural one-compartment model with first-order absorption were used to simulate fluoxetine pharmacokinetic data. A population of 1,000 individuals were simulated at standard fluoxetine doses (20 mg/day, 40 mg/day, and 60 mg/day) to estimate the percentage of the patients achieving a trough plasma level for the EC90 SARS-CoV-2 inhibitory concentration for a 10 day treatment period. All analyses were conducted via statistical programming in R.  Results.  Standard fluoxetine antidepressant doses resulted in a range of 81% to 97% of the patient population achieving a trough target plasma concentration of 23.2 ng/ml at day 10 and translates to a lung-tissue distribution coefficient of 60-times higher (EC90 of 4.02 mM). At a dose of 40 mg per day, at least 87% of patients will reach the trough target EC90 concentration within three days.   Conclusion. Overall, the findings of this population pharmacokinetic dosing study corroborates in vitro and observational clinical studies reporting the first selective serotonin reuptake inhibitor fluoxetine inhibits the SARS-CoV-2 pathogen at commonly treated doses in the practice of psychiatry.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yutaka Kondo ◽  
Kohei Ota ◽  
Haruki Imura ◽  
Naoki Hara ◽  
Nobuaki Shime

Abstract Background The prolonged β-lactam infusion strategy has emerged as the standard treatment for sepsis or septic shock despite its unknown efficacy. This study aimed to assess the efficacy of prolonged versus intermittent β-lactam antibiotics infusion on outcomes in sepsis or septic shock patients by conducting a systematic review and meta-analysis. Methods A thorough search was conducted on MEDLINE, the Cochrane Central Register of Controlled Trials, and the Igaku Chuo Zasshi databases. Randomized controlled trials (RCTs) comparing mortality between prolonged and intermittent infusion in adult patients with sepsis or septic shock were included. The primary outcome was hospital mortality. The secondary outcomes were the attainment of the target plasma concentration, clinical cure, adverse events, and occurrence of antibiotic-resistant bacteria. We performed a subgroup analysis stratified according to the year of publication before or after 2015 and a trial sequential analysis (TSA). The Der Simonian–Laird random-effects models were subsequently used to report the pooled risk ratios (RR) with confidence intervals (CI). Results We identified 2869 studies from the 3 databases, and 13 studies were included in the meta-analysis. Hospital mortality did not decrease (RR 0.69 [95%CI 0.47–1.02]) in the prolonged infusion group. The attainment of the target plasma concentration and clinical cure significantly improved (RR 0.40 [95%CI 0.21–0.75] and RR 0.84 [95%CI 0.73–0.97], respectively) in the prolonged infusion group. There were, however, no significant differences in the adverse events and the occurrence of antibiotic-resistant bacteria between the groups (RR 1.01 (95%CI 0.95–1.06) and RR 0.53 [95%CI 0.10–2.83], respectively). For the subgroup analysis, a significant improvement in hospital mortality or clinical cure was reported in studies published in or after 2015 (RR 0.66 [95%CI 0.44–0.98] and RR 0.67 [95%CI 0.50–0.90], respectively). The results of the TSA indicated an insufficient number of studies for a definitive analysis. Conclusions The prolonged infusion of β-lactam antibiotics significantly improved upon attaining the target plasma concentration and clinical cure without increasing the adverse event or the occurrence of antibiotic-resistant bacteria. Prolonged infusion could not improve hospital mortality although an improvement was shown for studies published in or after 2015. Further studies are warranted as suggested by our TSA results.


2019 ◽  
Vol 76 (2) ◽  
pp. 219-227
Author(s):  
Suzan C. M. Cochius - den Otter ◽  
Florian Kipfmueller ◽  
Brenda C. M. de Winter ◽  
Karel Allegaert ◽  
Dick Tibboel ◽  
...  

Abstract Purpose We developed a pharmacokinetic model of intravenous sildenafil in newborns with congenital diaphragmatic hernia (CDH) to achieve a target plasma concentration of over 50 μg/l. Methods Twenty-three CDH newborns with pulmonary hypertension (64 blood samples) received intravenous sildenafil. Patients received a loading dose of 0.35 mg/kg (IQR 0.16 mg/kg) for 3 h, followed by a continuous infusion of 1.5 mg/kg/day (IQR 0.1 mg/kg/day). For model development, non-linear mixed modeling was used. Inter-individual variability (IIV) and inter-occasion variability were tested. Demographic and laboratory parameters were evaluated as covariates. Normalized prediction distribution errors (NPDE) and visual predictive check (VPC) were used for model validation. Results A two-compartment disposition model of sildenafil and a one-compartment disposition model of desmethyl sildenafil (DMS) was observed with IIV in sildenafil and DMS clearance and volume of distribution of sildenafil. NPDE and VPC revealed adequate predictability. Only postnatal age increased sildenafil clearance. This was partly compensated by a higher DMS concentration, which also has a therapeutic effect. In this small group of patients, sildenafil was tolerated well. Conclusions This model for sildenafil in CDH patients shows that concentration-targeted sildenafil dosing of 0.4 mg/kg in 3 h, followed by 1.6 mg/kg/day continuous infusion achieves appropriate sildenafil plasma levels.


2018 ◽  
Vol 11 (3) ◽  
pp. 74 ◽  
Author(s):  
Zaril Zakaria ◽  
Alan Fong ◽  
Raj Badhan

Malaysia is a multi-ethnic society whereby the impact of pharmacogenetic differences between ethnic groups may contribute significantly to variability in clinical therapy. One of the leading causes of mortality in Malaysia is cardiovascular disease (CVD), which accounts for up to 26% of all hospital deaths annually. Clopidogrel is used as an adjunct treatment in the secondary prevention of cardiovascular events. CYP2C19 plays an integral part in the metabolism of clopidogrel to the active metabolite clopi-H4. However, CYP2C19 genetic polymorphism, prominent in Malaysians, could influence target clopi-H4 plasma concentrations for clinical efficacy. This study addresses how inter-ethnicity variability within the Malaysian population impacts the attainment of clopi-H4 target plasma concentration under different CYP2C19 polymorphisms through pharmacokinetic (PK) modelling. We illustrated a statistically significant difference (P < 0.001) in the clopi-H4 Cmax between the extensive metabolisers (EM) and poor metabolisers (PM) phenotypes with either Malay or Malaysian Chinese population groups. Furthermore, the number of PM individuals with peak clopi-H4 concentrations below the minimum therapeutic level was partially recovered using a high-dose strategy (600 mg loading dose followed by a 150 mg maintenance dose), which resulted in an approximate 50% increase in subjects attaining the minimum clopi-H4 plasma concentration for a therapeutic effect.


2018 ◽  
Vol 128 (5) ◽  
pp. 912-920 ◽  
Author(s):  
Torsten Birkholz ◽  
Christian Leuthold ◽  
Joachim Schmidt ◽  
Harald Ihmsen ◽  
Jürgen Schüttler ◽  
...  

Abstract Background Sufentanil is used for general anesthesia and analgesia. The study aim was to determine the effect of pharmacologically induced changes in cardiac output on the pharmacokinetics of sufentanil in anesthetized pigs. Methods Twenty-four pigs were randomly assigned to low, high, and control cardiac output groups. Cardiac output was decreased or increased from baseline by at least 40%, or maintained within ± 10% of baseline, respectively. Sufentanil was administered as a bolus followed by a continuous infusion for 120 min. Timed arterial samples were drawn for sufentanil concentration measurements. Results Data from 20 animals were analyzed. The cardiac outputs (means ± SD) were 2.9 ± 0.7, 5.4 ± 0.7, and 9.6 ± 1.6 l/min in the low, control, and high cardiac output groups, respectively. The parameters of the two-compartment pharmacokinetic model for these cardiac outputs were: CL1: 0.9, 1.2, and 1.7 l/min; CL2: 0.9, 3.1, and 6.9 l/min; V1: 1.6, 2.9, and 5.2 l; and V2: 27.5, 47.0, and 79.8 l, respectively. Simulated sufentanil doses to maintain a target plasma concentration of 0.5 ng/ml for 3 h were 99.5, 128.6, and 157.6 μg for cardiac outputs of 3, 5, and 7 l/min, respectively. The context-sensitive half-times for these cardiac outputs increased from 3.1 to 19.9 and 25.9 min, respectively. Conclusions Cardiac output influences the pharmacokinetics of sufentanil. Simulations suggest that in the case of increased cardiac output, the dose should be increased to avoid inadequate drug effect at the expense of prolonged recovery, whereas for low cardiac output the dose should be reduced, and a faster recovery may be expected.


2017 ◽  
Vol 20 (6) ◽  
pp. 571-577 ◽  
Author(s):  
Manuel Martin-Flores ◽  
Daniel M Sakai ◽  
Juhana Honkavaara ◽  
Luis Campoy

Objectives The objective of this study was to evaluate the cardiovascular effects of low-dose atipamezole administered intravenously to isoflurane-anesthetized cats receiving dexmedetomidine. We hypothesized that atipamezole would increase heart rate (HR) and reduce arterial blood pressure in isoflurane-anesthetized cats receiving dexmedetomidine. Methods Six healthy adult domestic shorthair cats were anesthetized with isoflurane and instrumented for direct arterial pressures and cardiac output (CO) measurements. The cats received a target-controlled infusion of dexmedetomidine (target plasma concentration 10 ng/ml) for 30 mins before administration of atipamezole. Two sequential doses of atipamezole (15 and 30 μg/kg IV) were administered at least 20 mins apart, during dexmedetomidine administration. The effects of dexmedetomidine and each dose of atipamezole on HR, mean arterial blood pressure (MAP), CO and systemic vascular resistance (SVR) were documented. Results Dexmedetomidine reduced the HR by 22%, increased MAP by 78% (both P ⩽0.01), decreased CO by 48% and increased SVR by 58% (both P ⩽0.0003). Administration of atipamezole 15 and 30 μg/kg intravenously increased HR by 8% ( P = 0.006) and 4% ( P = 0.1), respectively. MAP decreased by 39% and 47%, respectively (both P ⩽0.004). Atipamezole 30 μg/kg returned CO and SVR to baseline values. Conclusions and relevance Low doses of atipamezole (15 and 30 μg/kg) administered intravenously to anesthetized cats decreased arterial blood pressure with only marginal increases in HR. Atipamezole 30 μg/kg restored CO and SVR to baseline values before dexmedetomidine administration.


2012 ◽  
Vol 116 (5) ◽  
pp. 998-1005 ◽  
Author(s):  
Jessica J. Chemali ◽  
Christa J. Van Dort ◽  
Emery N. Brown ◽  
Ken Solt

Background A recent study showed that methylphenidate induces emergence from isoflurane general anesthesia. Isoflurane and propofol are general anesthetics that may have distinct molecular mechanisms of action. The objective of this study was to test the hypothesis that methylphenidate actively induces emergence from propofol general anesthesia. Methods Using adult rats, the effect of methylphenidate on time to emergence after a single bolus of propofol was determined. The ability of methylphenidate to restore righting during a continuous target-controlled infusion (TCI) of propofol was also tested. In a separate group of rats, a TCI of propofol was established and spectral analysis was performed on electroencephalogram recordings taken before and after methylphenidate administration. Results Methylphenidate decreased median time to emergence after a single dose of propofol from 735 s (95% CI: 598-897 s, n = 6) to 448 s (95% CI: 371-495 s, n = 6). The difference was statistically significant (P = 0.0051). During continuous propofol anesthesia with a median final target plasma concentration of 4.0 μg/ml (95% CI: 3.2-4.6, n = 6), none of the rats exhibited purposeful movements after injection of normal saline. After methylphenidate, however, all six rats promptly exhibited arousal and had restoration of righting with a median time of 82 s (95% CI: 30-166 s). Spectral analysis of electroencephalogram data demonstrated a shift in peak power from δ (less than 4 Hz) to θ (4-8 Hz) and β (12-30 Hz) after administration of methylphenidate, indicating arousal in 4/4 rats. Conclusions Methylphenidate decreases time to emergence after a single dose of propofol, and induces emergence during continuous propofol anesthesia in rats. Further study is warranted to test the hypothesis that methylphenidate induces emergence from propofol general anesthesia in humans.


2009 ◽  
Vol 111 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Rainer Lenhardt ◽  
Mukadder Orhan-Sungur ◽  
Ryu Komatsu ◽  
Raghavendra Govinda ◽  
Yusuke Kasuya ◽  
...  

Background Hypothermia may be beneficial in stroke victims; however, it provokes vigorous shivering. Buspirone and dexmedetomidine each linearly reduce the shivering threshold with minimal sedation and no respiratory depression. This study tested the hypotheses that the combination of buspirone and dexmedetomidine would (1) synergistically reduce the shivering threshold, (2) synergistically reduce the gain and maximum intensity of shivering, and (3) produce sufficient inhibition to permit cooling to 34 degrees C without excessive hypotension or sedation. Methods Eight healthy men were randomly assigned on 4 days to (1) no drug, (2) buspirone (60 mg orally), (3) dexmedetomidine (intravenous infusion to target plasma concentration of 0.6 ng/ml), or (4) combination of buspirone and dexmedetomidine at same doses. Lactated Ringer's solution (approximately 3 degrees C) was infused intravenously to decrease tympanic membrane temperature by 1.5 degrees C/h. Shivering threshold was defined as an increase in oxygen consumption greater than 20%. Sedation was evaluated using the Observer's Assessment of Sedation/Alertness scale. Results Mean arterial pressure and heart rate were slightly lower on dexmedetomidine and combination days. Likewise, the level of sedation was statistically different on these 2 days but clinically unimportant. Buspirone reduced the shivering threshold from 36.6 degrees C +/- 0.4 degrees C to 35.9 degrees C +/- 0.4 degrees C, dexmedetomidine reduced it to 34.7 degrees C +/- 0.5 degrees C, and the combination to 34.1 +/- 0.4 degrees C. The interaction effect of 0.04 degrees C was not significant. The gain of shivering and maximum shivering intensity were similar on each day. Conclusions The combination of buspirone and dexmedetomidine additively reduced the shivering threshold. Thus, supplementing dexmedetomidine with buspirone blocks shivering and causes only minimal sedation.


2004 ◽  
Vol 100 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Pascal Alfonsi ◽  
Frederic Adam ◽  
Andrea Passard ◽  
Bruno Guignard ◽  
Daniel I. Sessler ◽  
...  

Background The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering. Methods Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34 degrees C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response. Results Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9 degrees C. microg-1. ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0 degrees C. microg-1. ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3 degrees C. microg-1. ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4 degrees C (P &lt; 0.001) without any discernible effect on the sweating or vasoconstriction thresholds. Conclusions Most drugs with thermoregulatory actions-including anesthetics, sedatives, and opioids-synchronously reduce the vasoconstriction and shivering thresholds. However, nefopam reduced only the shivering threshold. This pattern has not previously been reported for a centrally acting drug. That pharmacologic modulations of vasoconstriction and shivering can be separated is of clinical and physiologic interest.


Sign in / Sign up

Export Citation Format

Share Document