scholarly journals The Corrosion and Wear Behaviors of a Medium-Carbon Bainitic Steel Treated by Boro-Austempering Process

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1959
Author(s):  
Man Liu ◽  
Wei Wang ◽  
Haijiang Hu ◽  
Feng Cai ◽  
Sheng Liu ◽  
...  

The effects of boro-austempering treatment on growth kinetics of borided layers, microstructure, and properties in a medium-carbon bainitic steel were investigated. The microstructure, distribution in coatings, corrosion, and wear properties of boro-austempered steels were characterized by a microscope, field-emission electron probe micro analyzer, scanning vibrating electrode technique system and wear resistance machine. The results show that the corrosion resistance of steels in different corrosive mediums was significantly enhanced by boro-austempering treatment. In addition, the wear performance of borided layers was improved by more than two times compared to bainitic substrates, proving a better wear property of samples treated through the boro-austempering route. The solubility of carbon and silicon in borides is very little. In addition, the dual-phase coating of FeB and Fe2B was observed, and the internal stress induced during the growth of Fe2B and FeB was almost eliminated. The preferential crystallographic growth directions of Fe2B and FeB are [001] and [010], respectively, which belongs to the (100) plane. Finally, the kinetics equation d2 = 0.125·t of the borided layers at 1223 K was established.

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 261 ◽  
Author(s):  
Xiaodong Li ◽  
Shasha Liu ◽  
Jiawei Wang ◽  
Mengxiao Yu ◽  
Haibo Tang

In order to improve the wear resistance of TC11 titanium alloy, a mixture of ZrN (10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.%) and TC11 alloy powders are laser cladded on a forged TC11 substrate. The microstructure and wear property of coatings are systematically analyzed. The results show that the microstructure of sample with 10 wt.% ZrN addition has a very fine α + β two-phase microstructure, powders of ZrN are fully melted with no new phase appearance. By increasing the amount of ZrN to 20 wt.%, new phases of TiN0.3 precipitate with the dendritic morphology in the coating. A further increase in ZrN to 30 wt.% and 40 wt.% do not significantly change the microstructure of the cladded layer but increase the microhardness significantly, phases of TiN form with further enhancement of coating hardness. At the bottom of the cladded layer, the morphology of TiN0.3 and TiN precipitations changes into a spherical shape with small size. However, the wear performance of the coatings gradually reduces due to the increase of brittleness, and the superior wear properties of the coating are achieved when sample consisted of 20 wt.% ZrN.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5785
Author(s):  
Zhengyao Yi ◽  
Chenchen Song ◽  
Guohui Zhang ◽  
Tianqi Tong ◽  
Guangyi Ma ◽  
...  

For improving the wear properties of NiCrAlY, the 10 wt %, 20 wt % and 30 wt % ZrO2-added NiCrAlY samples were prepared by ultrasonic-assisted direct laser deposition, respectively. The results showed that the ultrasonic-assisted direct laser deposition can realize the ZrO2-added NiCrAlY preparation. Furthermore, due to the cavitation effect and agitation of the ultrasound in the molten pool, ultrasonic-assisted could make the upper surface of the samples smoother and flatter, and it also improved the microstructural homogeneity. The microstructure was mainly composed of columnar dendrites, and most of ZrO2 particles were located in the intergranular regions. The principal phase constituents were found to contain γ-Ni and t-NiZr2, and the amorphous (Ni, Zr) intermetallic phase generated, because of more rapid solidification after ultrasound assisted. The microhardness was improved slightly with the increase of ZrO2 contents, rising from 407.9 HV (10% ZrO2) to 420.4 HV (30% ZrO2). Correspondingly, wear mass loss was decreased with the maximum drop 22.7% of 30% ZrO2 compared to that of 10% ZrO2, and wear mechanisms were mainly abrasive wear with slightly adhesive wear. After applying ultrasound, the oxide islands in samples disappeared, and more ceramic particles were retained. Thus, the hardness and wear performance of the samples were improved.


The present study explores the wear properties of Mg composites with different amounts of nano- alumina particles (up to 1.4 vol. percent). Tests are carried out on wear device with a constant load of 10N, at sliding speeds range between 1 to 10 m/s compared to EN31 steel disks. Magnesium metal matrix composites reinforced by 1.4 volume percent of alumina particles (nano – sized) possess mechanical properties equivalent or even superior to alike composites of high level micron reinforcement. The outcomes reveals that the introduction of nano powder in various proportions influences the increment of wear performance of magnesium alloy and shows better wear performance at both the speeds by adding 1.4 volume % nano Al2O3 to the pure Mg and other Mg- Al2O3 composites. Due to the presence of Al2O3 as reinforcement for lower and higher sliding speeds, the improvement if found in wear property. The enhancement in wear property of the nano- composites is due to the increased hardness and strength with the nano- alumina particles presence in matrix. Initially there is increase in porosity by the addition of nano alumina to magnesium and later decreased gradually by inceasing the nano alumina percentage. Magnesium nano alumina composites can be considered as an excellent material because of better wear components are of major importance, mainly used in the aerospace and automotive engineering applications.


2016 ◽  
Vol 24 (05) ◽  
pp. 1750066 ◽  
Author(s):  
HAMED RAHMANI ◽  
MAHMOOD ALIOFKHAZRAEI ◽  
ABDOSSALAM KARIMZADEH

Nanocomposite Ni–Zn coatings containing 80 wt.% Al2O3, 5 wt.% Y2O3 and 15 wt.% graphene were fabricated by pulsed electrodeposition method in nickel–zinc sulphate-based electrolyte and effects of pulse current parameters on nickel and other element contents, microstructure, resistance to corrosion and tribological properties of the coatings were investigated. The pulsed current with duty cycle from 10% to 50% was applied to different samples and frequency changed gradually from 500 to 4000[Formula: see text]Hz in five steps during coating process. Increasing the duty cycle led to decrease of absorbed nanoparticles in the surface of the coatings from 4.4 vol% to 3.58 vol% The sample coated with 10% duty cycle had utmost alumina content in the coating surface, 3.5 vol% in first layer up to 4.4 vol% in fifth layer. The sample coated with 30% duty cycle had higher corrosion resistance with passive current density of 2.5[Formula: see text]mA/cm2. Furthermore, the results showed that by increasing the duty cycle, wear rate had been increased up to 1.3[Formula: see text][Formula: see text][Formula: see text]10[Formula: see text][Formula: see text]mm2/N[Formula: see text]m.


2022 ◽  
Vol 327 ◽  
pp. 71-81
Author(s):  
Yun Xin Cui ◽  
Han Xiao ◽  
Chi Xiong ◽  
Rong Feng Zhou ◽  
Zu Lai Li ◽  
...  

The semi-solid extruded CuSn10P1 alloy bushings were homogenization annealed. The effects of annealing process on the hardness and wear properties of bushings were researched. The results show the Brinell hardness increases firstly and then decreases with the increase of annealing temperature and annealing time. With the annealing temperature increasing, the grinding loss rate and friction factor decrease firstly and then increase. At the annealing time of 120 min, the grinding loss rate decreases from 7% at the annealing temperature of 450 °C to 6% at 500 °C, and then increases from 6% at 500 °C to 12% at 600 °C. The friction factor decreases from 0.54 to 0.48 and then increases to 0.83. At the annealing temperature of 500 °C, the grinding loss rate decreases from 11% at the annealing time of 60 min to 6% at 120 min, and then increases to 15% at 150 min. The friction factor decreases from 0.67 to 0.48 and then increases to 0.72. The best wear performance and Brinell hardness can be obtained at annealing temperature of 500 °C for 120 min.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Mahsa Ebrahimi ◽  
Abbas Zarei-Hanzaki ◽  
A. H. Shafieizad ◽  
Michaela Šlapáková ◽  
Parya Teymoory

The present work was primarily conducted to study the wear behavior of as-received and severely deformed Al-15%Mg2Si in situ composites. The severe plastic deformation was applied using accumulative back extrusion (ABE) technique (one and three passes). The continuous dynamic recrystallization (CDRX) was recognized as the main strain accommodation and grain refinement mechanism within aluminum matrix during ABE cycles. To investigate the wear properties of the processed material, the dry sliding wear tests were carried out on both the as-received and processed samples under normal load of 10 and 20 N at room temperature, 100 °C, and 200 °C. The results indicated a better wear resistance of processed specimens in comparison to the as-received ones at room temperature. In addition, the wear performance was improved as the ABE pass numbers increased. These were related to the presence of oxide tribolayer. At 100 °C, the as-received material exhibited a better wear performance compared to the processed material; this was attributed to the formation of a work-hardened layer on the worn surface. At 200 °C, both the as-received and processed composites experienced a severe wear condition. In general, elevating the temperature changed the dominant wear mechanism from oxidation and delamination at room temperature to severe adhesion and plastic deformation at 200 °C.


Sign in / Sign up

Export Citation Format

Share Document