Ca(2+) in specification of vegetal cell fate in early sea urchin embryos

2001 ◽  
Vol 204 (5) ◽  
pp. 823-834
Author(s):  
I. Yazaki

In sea urchin embryos, the first specification of cell fate occurs at the fourth cleavage, when small cells (the micromeres) are formed at the vegetal pole. The fate of other blastomeres is dependent on the receipt of cell signals originating from the micromeres. The micromeres are fated to become skeletogenic cells and show the ability to induce the endoderm (the archenteron) in the neighbouring cells during the 16- to 60-cell stage. Several molecules involved in signaling pathways, i.e. Notch for mesoderm specification, bone morphogenic protein (BMP) for ectoderm specification and beta-catenin for endoderm specification, are spatially and temporally expressed during development. In the micromeres, beta-catenin increases and subsequently localizes to the nuclei under the regulation of TCF, a nuclear binding partner of beta-catenin, until the 60-cell stage. However, the mechanisms activating these signaling substances are still unclear. In this article, I demonstrate some specific properties of the membrane and cytoplasm of micromeres including new findings on intracellular Ca(2+) concentration, and propose a mechanism by which the functional micromeres are autonoumously formed. The possible roles of these in the specification of vegetal cell fate in early development are discussed.

1998 ◽  
Vol 95 (16) ◽  
pp. 9343-9348 ◽  
Author(s):  
Athula H. Wikramanayake ◽  
Ling Huang ◽  
William H. Klein

In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin.


Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 345-357 ◽  
Author(s):  
C.Y. Logan ◽  
J.R. Miller ◽  
M.J. Ferkowicz ◽  
D.R. McClay

Beta-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether beta-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear beta-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, beta-catenin accumulates in nuclei that include the precursors of the endoderm and mesoderm, suggesting that it plays a role in vegetal specification. Using pharmacological, embryological and molecular approaches, we determined the function of beta-catenin in vegetal development by examining the relationship between the pattern of nuclear beta-catenin and the formation of endodermal and mesodermal tissues. Treatment of embryos with LiCl, a known vegetalizing agent, caused both an enhancement in the levels of nuclear beta-catenin and an expansion in the pattern of nuclear beta-catenin that coincided with an increase in endoderm and mesoderm. Conversely, overexpression of a sea urchin cadherin blocked the accumulation of nuclear beta-catenin and consequently inhibited the formation of endodermal and mesodermal tissues including micromere-derived skeletogenic mesenchyme. In addition, nuclear beta-catenin-deficient micromeres failed to induce a secondary axis when transplanted to the animal pole of uninjected host embryos, indicating that nuclear beta-catenin also plays a role in the production of micromere-derived signals. To examine further the relationship between nuclear beta-catenin in vegetal nuclei and micromere signaling, we performed both transplantations and deletions of micromeres at the 16-cell stage and demonstrated that the accumulation of beta-catenin in vegetal nuclei does not require micromere-derived cues. Moreover, we demonstrate that cell autonomous signals appear to regulate the pattern of nuclear beta-catenin since dissociated blastomeres possessed nuclear beta-catenin in approximately the same proportion as that seen in intact embryos. Together, these data show that the accumulation of beta-catenin in nuclei of vegetal cells is regulated cell autonomously and that this localization is required for the establishment of all vegetal cell fates and the production of micromere-derived signals.


1971 ◽  
Vol 50 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Rudolf A. Raff ◽  
Gerald Greenhouse ◽  
Kenneth W. Gross ◽  
Paul R. Gross

Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S41-S41 ◽  
Author(s):  
David R. McClay

It has long been recognized that micromeres have special significance in early specification events in the sea urchin embryo. Micromeres have the ability to induce a secondary axis if transferred to the animal pole at the 16-cell stage of sea urchin embryos (Hörstadius, 1939). Without micromeres an isolated animal hemisphere develops into an ectodermal ball called a dauer blastula. Addition of micromeres to an animal half rescues a normal pluteus larva, including endoderm (Hörstadius, 1939). Despite these well-known experiments, however, neither the molecular basis of that induction nor the endogenous inductive role of micromeres in development was known. In recent experiments we learned that if one eliminates micromeres from the vegetal pole at the 16-cell stage the resulting embryo makes no secondary mesenchyme. Earlier it had been found that β-catenin is crucial for specification events that lead to mesoderm and endoderm (Wikra-manayake et al., 1998; Emily-Fenouil et al., 1998; Logan et al., 1999). We noticed that at the 16-cell stage β-catenin enters the nuclei of micromeres, then enters the nuclei of macromeres at the 32-cell stage (Logan et al., 1999). Since nuclear entry of β-catenin is known to be important for its signalling function in the Wnt pathway, we asked whether β-catenin functions in the micromere induction pathway.


1985 ◽  
Vol 225 (2) ◽  
pp. 429-434 ◽  
Author(s):  
A Isoai ◽  
I Yasumasu

The activity of ADP-ribosyltransferase in nuclei isolated from sea-urchin embryos was estimated by the incorporation of [adenosine-14C]NAD+ into the acid-insoluble fraction. Hydrolysis of this acid-insoluble product by snake venom phosphodiesterase yielded radioactive 5′-AMP and phosphoribosyl-AMP. The incorporation of [14C]-NAD+ was inhibited by 3-aminobenzamide and nicotinamide, potent inhibitors of ADP-ribosyltransferase. [14C]NAD+ incorporation into the acid-insoluble fraction results from the reaction of ADP-ribosyltransferase. The optimum pH for the enzyme in isolated nuclei was 7.5. The enzyme, in 50 mM-Tris/HCl buffer, pH 7.5, containing 0.5 mM-NAD+ and 0.5 mM-dithiothreitol, exhibited the highest activity at 18 degrees C in the presence of 14 mM-MgCl2. The apparent Km value for NAD+ was 25 microM. The activity of the enzyme was measured in nuclei isolated from the embryos at several stages during early development. The activity was maximum at the 16-32-cell stage and then decreased to a minimum at the mesenchyme blastula stage. Thereafter its activity slightly increased at the onset of gastrulation and decreased again at the prism stage.


1997 ◽  
Vol 273 (3) ◽  
pp. C822-C825 ◽  
Author(s):  
B. Dale ◽  
I. Yazaki ◽  
E. Tosti

Using the whole cell clamp technique, we have measured calcium-dependent currents and steady-state conductance in early sea urchin blastomeres. The calcium currents in M phase decreased from 8.5 microA/cm2 at the four-cell stage to 5.4 microA/cm2 at the eight-cell stage. In 16-cell stage embryos, calcium currents were 7.4 microA/cm2 in the mesomeres, 2.3 microA/cm2 in the macromeres, and were not detected in the micromeres. In contrast, the micromeres had a two- to threefold higher steady-state conductance than the mesomeres or macromeres, which may be due to potassium ion conductivity. Nifedipine, an L-type channel antagonist, delays cleavage division at a concentration of 0.05-0.1 mM and causes developmental defects, such as poor skeletal differentiation in later sea urchin embryos.


Development ◽  
1989 ◽  
Vol 106 (3) ◽  
pp. 567-579 ◽  
Author(s):  
D.L. Hurley ◽  
L.M. Angerer ◽  
R.C. Angerer

We have examined the importance of the extracellular environment on the ability of separated cells of sea urchin embryos (Strongylocentrotus purpuratus) to carry out patterns of mRNA accumulation and decay characteristic of intact embryos. Embryos were dissociated into individual blastomeres at 16-cell stage and maintained in calcium-free sea water so that daughter cells continuously separated. Levels of eleven different mRNAs in these cells were compared to those in control embryos when the latter reached mesenchyme blastula stage, by which time cells in major regions of the intact embryo have assumed distinctive patterns of message accumulation. Abrogation of interactions among cells resulted in marked differences in accumulation and/or turnover of the individual mRNAs, which are expressed with diverse temporal and spatial patterns of prevalence in intact embryos. In general, separated cells are competent to execute initial events of mRNA accumulation and decay that occur uniformly in most or all blastomeres of the intact embryo and are likely to be regulated by maternal molecules. The ability of separated cells to accumulate mRNAs that appear slightly later in development depends upon the presumptive tissue in which a given mRNA is found in the normal embryo. Messages that normally accumulate in cells at the vegetal pole also accumulate in dissociated cells either at nearly normal levels or at increased levels. In one such case, that of actin CyIIa, which is normally restricted to mesenchyme cells, in situ hybridization demonstrates that the fraction of dissociated cells expressing this message is 4- to 5-fold higher than in the normal embryo. In contrast, separated cells accumulate significant levels of a message expressed uniformly in the early ectoderm but are unable to execute accumulation and decay of different messages that distinguish oral and aboral ectodermal regions. These data are consistent with the idea that interactions among cells in the intact embryo are important for both positive and negative control of expression of different genes that are early indicators of the specification of cell fate.


Sign in / Sign up

Export Citation Format

Share Document