Precise Position Adjustment of Automotive Electro-Hydraulic Coupling System with Parameter Perturbations

Author(s):  
Mingming Mei ◽  
Shuo Cheng ◽  
Liang Li ◽  
Bingjie Yan

Abstract Based on the guaranteed cost theory, this paper proposes a robust controller for the automotive electro-hydraulic coupling system. However, parameter perturbation caused by the model linearization is a critical challenge for the nonlinear electro-hydraulic coupling system. Generally, the electrical brake booster system (E-Booster) can be separated into three parts, a permanent magnet synchronous motor (PMSM), a hydraulic model of the master cylinder, and the transmission mechanism. In this paper, the robust guaranteed cost controller (RGCC) could adjust accurately the pushrod position of the E-Booster and has strong robustness against internal uncertainties, and the linear extended state observer (LESO) was utilized to optimize E-Booster's dynamic performance. Thus, the tracking differentiator (TD) and LESO are used to improve the dynamic precision and reduce the hysteresis effect. The overshoot is suppressed by TD, and the disturbance caused by nonlinear uncertainty is restrained by LESO. Experiment results show that RGCC sacrifices 6% phase lag in the low-frequency domain for a 10% and 40% reduction in first and second-order respectively compared with the proportion integration differentiation (PID). Results demonstrate that RGCC has higher precision and stronger robustness in dynamic behaviour.

2020 ◽  
pp. 107754632098246
Author(s):  
Peiling Cui ◽  
Fanjun Zheng ◽  
Xinxiu Zhou ◽  
Wensi Li

Permanent magnet synchronous motor always suffers from air gap field distortion and inverter nonlinearity, which lead to the harmonic components in motor currents. A resonant controller is a remarkable control method to eliminate periodic disturbance, whereas the conventional resonant controller is limited by narrow bandwidth and phase lag. This article presents a novel resonant controller with a precise phase compensation method for a permanent magnet synchronous motor to suppress the current harmonics. Based on the analysis of the current harmonic characteristics, the proposed resonant controller for rejecting a set of selected current harmonic components is plugged in the current loop, and it is parallel to the traditional proportional–integral controller. Furthermore, the stability analysis of the proposed resonant controller is investigated, and the parameters are tuned to get a satisfactory performance. Compared with the conventional resonant controller, the proposed resonant controller can achieve good steady-state performance, dynamic performance, and frequency adaptivity performance, simultaneously. Finally, the experimental results demonstrate the effectiveness of the proposed suppression scheme.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2010 ◽  
Vol 23 (14) ◽  
pp. 3855-3873 ◽  
Author(s):  
Alexey V. Fedorov

Abstract Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio ɛk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.


2013 ◽  
Vol 722 ◽  
pp. 361-368
Author(s):  
Yu Dong Li ◽  
Bo Zhou ◽  
Ying Liu ◽  
Cheng Liang Zhao

Two current signal injection methods, the fluctuating high frequency (HF) current signal injection and low frequency (LF) current signal injection, were discussed. The basic principles of rotor position self-sensing using these current signal injection and the key techniques in implementation were presented and the simulation models for sensorless vector control systems of a permanent magnet synchronous motor (PMSM) were established using two proposed rotor position estimation methods. Comparative simulation study of the fluctuating HF current signal injection and LF current signal injection was investigated, and draw the conclusions that the saliency-tracking scheme using fluctuating HF current signal injection possesses simpler configuration and better speed-adjustable performance both in static and dynamic.


2005 ◽  
Vol 288 (4) ◽  
pp. H1777-H1785 ◽  
Author(s):  
Giandomenico Nollo ◽  
Luca Faes ◽  
Alberto Porta ◽  
Renzo Antolini ◽  
Flavia Ravelli

Although in physiological conditions RR interval and systolic arterial pressure (SAP) are likely to interact in a closed loop, the traditional cross-spectral analysis cannot distinguish feedback (FB) from feedforward (FF) influences. In this study, a causal approach was applied for calculating the coherence from SAP to RR ( Ks-r) and from RR to SAP ( Kr-s) and the gain and phase of the baroreflex transfer function. The method was applied, compared with the noncausal one, to RR and SAP series taken from 15 healthy young subjects in the supine position and after passive head-up tilt. For the low frequency (0.04–0.15 Hz) spectral component, the enhanced FF coupling ( Kr-s = 0.59 ± 0.21, significant in 14 subjects) and the blunted FB coupling ( Ks-r = 0.17 ± 0.17, significant in 4 subjects) found at rest indicated the prevalence of nonbaroreflex mechanisms. The tilt maneuver recovered FB influences ( Ks-r = 0.47 ± 0.16, significant in 14 subjects), which were stronger than FF interactions ( Ks-r = 0.34 ± 0.19, significant in 9 subjects). At the respiratory frequency, the RR-SAP regulation was balanced at rest ( Ks-r = 0.30 ± 0.18 and Kr-s = 0.29 ± 0.20, significant in 11 and 8 subjects) and shifted toward FB mechanisms after tilt ( Ks-r = 0.35 ± 0.19 and Kr-s = 0.19 ± 0.11, significant in 14 and 8 subjects). The causal baroreflex gain estimates were always lower than the corresponding noncausal values and decreased significantly from rest to tilt in both frequency bands. The tilt-induced increase of the phase lag from SAP to RR suggested a shift from vagal to sympathetic modulation. Thus the importance of nonbaroreflex interactions pointed out the necessity of accounting for causality in the cross-spectral analysis of the interactions between cardiovascular variables in healthy humans.


Author(s):  
Xiaofeng Yang ◽  
Long Yan ◽  
Yujie Shen ◽  
Hongchang Li ◽  
Yanling Liu

Inerter, a new type of mass element, can increase the inertia of motion between two endpoints. In order to study the dynamic inertia effect of inerter–spring–damper suspension for heavy vehicle on ride comfort and road friendliness, the inerter–spring–damper suspension is applied and its mechanism is studied. This paper establishes a half vehicle model of inerter–spring–damper suspension for heavy vehicle. The parameters of inerter–spring–damper suspension for heavy vehicle are optimized by multi-objective genetic algorithm and system simulations are carried out. The parametric influence of different spring stiffness, damping coefficient, inertance, and load on suspension performance is also studied. The simulation results demonstrate that the centroid acceleration and pitch angular acceleration are improved by 24.90% and 23.54%, respectively, and the comprehensive road damage coefficient is reduced by 4.05%. The results illustrate that the inerter–spring–damper suspension can decrease the vertical vibration of vehicle suspension especially in low frequency and reduce the road damage. The analyses of suspension parameters perturbation reveal their different effect laws of the different wheels on vehicle ride comfort and road friendliness, which provide a theoretical basis for setting parameters of inerter–spring–damper suspension.


2013 ◽  
Vol 64 (5) ◽  
pp. 298-304 ◽  
Author(s):  
Baghdad Belabbes ◽  
Abdelkader Lousdad ◽  
Abdelkader Meroufel ◽  
Ahmed Larbaoui

Abstract The aim of the present paper is the study of the behaviour of passivity based control and difficulties due to synthesis for various operating conditions of a synchronous motor with a permanent magnets. The study takes into account the guarantee of satisfactory static and dynamic performance. It also allows the system to be insensitive to disturbances and uncertainties on the parameters. A number of estimation techniques have been developed to achieve speed and position sensorless permanent magnet synchronous motor (PMSM) drives. Most of them suffer from variation of motor parameters such as the stator resistance, stator inductance and torque constant. Also it is known that conventional linear estimators are not adaptive variations of the operating point in a nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document