enzymatic detoxification
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 25 ◽  
Author(s):  
Kinga Salus ◽  
Donata Pluskota-Karwatka

: Glutathione (GSH), due to the ability to capture the reactive electrophiles of exo- and endogenous origin, is expected to prevent cross-linking induced by these compounds. However, it may instead become cross-linked itself. We subjected glutathione to reactions with model α,β-unsaturated carbonyl systems resulting from the interactions of adenosine with bifunctional aldehyde products of lipid peroxidation, and identified a range of adducts and cross-linked products. We found that the S-conjugated adducts, initially formed in the typical for GSH Michael addition to α,β-unsaturated carbonyl system, unexpectedly undergo gradual degradation giving rise to the final N-conjugated products, in which formation of the peptide amino group was involved instead of the sulfhydryl functionality. This finding shows that the role of the GSH amino group in the non-enzymatic detoxification is underestimated and that reactions between cellular α,β-unsaturated carbonyl compounds, and GSH may be more complex than are presently perceived.


PLoS Biology ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. e3001208
Author(s):  
Jannell V. Bazurto ◽  
Dipti D. Nayak ◽  
Tomislav Ticak ◽  
Milya Davlieva ◽  
Jessica A. Lee ◽  
...  

Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.


Food Control ◽  
2020 ◽  
pp. 107726
Author(s):  
Johanna F. Alberts ◽  
Ibtisaam Davids ◽  
Wulf-Dieter Moll ◽  
Gerd Schatzmayr ◽  
Hester-Mari Burger ◽  
...  

2020 ◽  
Author(s):  
Jannell V. Bazurto ◽  
Dipti D. Nayak ◽  
Tomislav Ticak ◽  
Milya Davlieva ◽  
Jessica A. Lee ◽  
...  

AbstractNormal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that inhibits translation in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved and may include translational machinery. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and modulates translational activity.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 405
Author(s):  
Sandra Debevere ◽  
Dian Schatzmayr ◽  
Nicole Reisinger ◽  
Markus Aleschko ◽  
Geert Haesaert ◽  
...  

Ruminal microbiota of cattle are not able to detoxify all mycotoxins. In addition, detoxification can be hampered by adverse ruminal conditions (e.g., low ruminal pH). Hence, in the cattle husbandry, mycotoxin binders and modifiers could be used to prevent animal exposure to mycotoxins. In this study, an in vitro rumen model, including feed matrix, was established as first screening tool to test the efficacy of five products claiming to detoxify mycotoxins. The detoxifiers had different modes of action: (a) binding (three products); (b) enzymatic detoxification of zearalenone (ZEN; one product, ZenA); and (c) bacterial transformation of trichothecenes (one product, BBSH 797). For the mycotoxin binders, the binding to the mycotoxins enniatin B (ENN B), roquefortine C (ROQ-C), mycophenolic acid (MPA), deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEN) were tested at a dose recommended by the manufacturers. The in vitro model demonstrated that all binders adsorbed ENN B to a certain extent, while only one of the binders also partially adsorbed ROQ-C. The binders did not change the concentrations of the other mycotoxins in the ruminal fluid. The enzyme ZenA detoxified ZEN very quickly and prevented the formation of the more toxic metabolite α-zearalenol (α-ZEL), both at normal (6.8) and low ruminal pH (5.8). The addition of BBSH 797 enhanced detoxification of DON and NIV, both at normal and low ruminal pH. The in vitro rumen model demonstrated that the addition of ZenA seems to be a very promising strategy to prevent estrogenic effects of ZEN contaminated feed, and BBSH 797 is efficient in the detoxification of trichothecenes.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 117 ◽  
Author(s):  
Xiaojiao Chang ◽  
Hujun Liu ◽  
Jing Sun ◽  
Jun Wang ◽  
Chengcheng Zhao ◽  
...  

The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 523 ◽  
Author(s):  
Johanna Alberts ◽  
Gerd Schatzmayr ◽  
Wulf-Dieter Moll ◽  
Ibtisaam Davids ◽  
John Rheeder ◽  
...  

Enzymatic detoxification has become a promising approach for control of mycotoxins postharvest in grains through modification of chemical structures determining their toxicity. In the present study fumonisin esterase FumD (EC 3.1.1.87) (FUMzyme®; BIOMIN, Tulln, Austria), hydrolysing fumonisin (FB) mycotoxins by de-esterification, was utilised to develop an enzymatic reduction method in a maize kernel enzyme incubation mixture. Efficacy of the FumD FB reduction method in “low” and “high” FB contaminated home-grown maize was compared by monitoring FB1 hydrolysis to the hydrolysed FB1 (HFB1) product utilising a validated LC-MS/MS analytical method. The method was further evaluated in terms of enzyme activity and treatment duration by assessing enzyme kinetic parameters and the relative distribution of HFB1 between maize kernels and the residual aqueous environment. FumD treatments resulted in significant reduction (≥80%) in “low” (≥1000 U/L, p < 0.05) and “high” (100 U/L, p < 0.05; ≥1000 U/L, p < 0.0001) FB contaminated maize after 1 h respectively, with an approximate 1:1 µmol conversion ratio of FB1 into the formation of HFB1. Enzyme kinetic parameters indicated that, depending on the activity of FumD utilised, a significantly (p < 0.05) higher FB1 conversion rate was noticed in “high” FB contaminated maize. The FumD FB reduction method in maize could find application in commercial maize-based practices as well as in communities utilising home-grown maize as a main dietary staple and known to be exposed above the tolerable daily intake levels.


2019 ◽  
Author(s):  
Dragana Despotovic ◽  
Einav Aharon ◽  
Artem Dubovetskyi ◽  
Haim Leader ◽  
Yacov Ashani ◽  
...  

AbstractNerve agents are organophosphates that potently inhibit acetylcholinesterase and their enzymatic detoxification has been a long-standing goal. Nerve agents vary widely in size, charge, hydrophobicity, and the cleavable ester bond. A single enzyme is therefore unlikely to efficiently hydrolyze all agents. Here, we describe a mixture of three previously developed variants of the bacterial phosphotriesterase (Bd-PTE) that are highly stable and nearly sequence identical. This mixture enables effective detoxification of a broad spectrum of known threat agents – GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), VX, and Russian-VX. The potential for dimer dissociation and exchange that could inactivate Bd-PTE has minimal impact, and the three enzyme variants are as active in a mixture as they are individually. To our knowledge, this engineered enzyme ‘cocktail’ comprises the first solution for enzymatic detoxification of the entire range of threat nerve agents.


Sign in / Sign up

Export Citation Format

Share Document