nominal resolution
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Yaxian Yang ◽  
Guoqing Zhang ◽  
Chen Zhang ◽  
Xinyue Cao ◽  
Lina Liu ◽  
...  

Abstract Sub-micron faculae (light spots) at the single-photon level have important applications in many fields. This report demonstrates a method for measuring facula size at the sub-micron single-photon level indirectly. The developed method utilizes Silicon Photomultipliers (SiPMs) as the single-photon response detectors, combined with a nano-positioning stage. The approach involves one- or two-dimensional space scanning and a deconvolution operation, which enable evaluations of the size and spatial distribution of focused facula in a single-photon-level pulsed laser. The results indicate that the average full width at half maximum of the faculae is about 0.66 µm, which is close to the nominal resolution of the objective lens of the microscope (0.42 µm). The proposed method has two key advantages: (1) it can measure sub-micron facula at the single-photon level, and (2) the sub-micron facula can easily be aligned with the detector because the array area of the avalanche photodiode cells in SiPM is usually larger than one square millimeter, and there is no need to put an optical slit, knife edge, or pinhole in front of the detector. The method described herein is applicable in weak light facula detection related fields.


2021 ◽  
Author(s):  
Athanasios V. Serafeim ◽  
Irene Karathanasi ◽  
George Kokosalakis ◽  
Roberto Deidda ◽  
Andreas Langousis

<p><strong>Abstract</strong></p><p>In the present work we develop and test a non-parametric statistical methodology to obtain point estimates of Minimum Night Flow (MNF) in Water Distribution Networks (WDNs). The methodology constitutes a simplified version of the approach of Serafeim et al. (2021) for confidence interval estimation of background losses in WDNs, that simultaneously analyzes all night flow measurements, producing robust estimates independent of the nominal resolution of the available data.</p><p>In addition to being simpler to apply and computationally more efficient, the developed method can be applied to any WDN independent of its size, age and overall condition, its  specific geometric characteristics (intensity of altimetry, average diameter etc.), inlet/operating pressures, and the nominal resolution of the flow data.</p><p>The effectiveness of the method is tested via a large-scale application to the WDN of the City of Patras in western Greece, which consists of 79 Pressure Management Areas (PMAs) with more than 700 km of pipeline grid. To do so, we use flow data at 1 min temporal resolution, provided by the Municipal Enterprise of Water Supply and Sewerage of the City of Patras, for the 4-month winter period from 01 November 2018 – 28 February 2019, which are progressively averaged to coarser temporal resolutions, in an effort to test the sensitivity of the developed method to the nominal resolution of the data.  </p><p>The obtained point estimates of MNF are assessed on the basis of the confidence intervals obtained by the approach of Serafeim et al. (2021), highlighting the accuracy and robustness of a simple non-parametric approach in providing MNF point estimates at a minimum of effort.</p><p><strong>Acknowledgements</strong></p><p>The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1162).</p><p><strong>References</strong></p><p>Serafeim, A.V., G. Kokosalakis, R. Deidda, I. Karathanasi and A. Langousis, (2021) Probabilistic Estimation of Minimum Night Flow in Water Distribution Networks: Large-scale Application to the City of Patras in Western Greece (submitted).</p>


2020 ◽  
Author(s):  
Uzay E. Emir ◽  
Jaiyta Sood ◽  
Mark Chiew ◽  
Albert Thomas ◽  
Sean P. Lane

AbstractPurposeThe human cerebellum plays an important role in functional activity cerebrum which is ranging from motor to cognitive activities since due to its relaying role between spinal cord and cerebrum. The cerebellum poses many challenges to magnetic resonance spectroscopic imaging (MRSI) due to the caudal location, the susceptibility to physiological artifacts and partial volume artifact due to its complex anatomical structure. Thus, in present study, we propose a high-resolution MRSI acquisition scheme for the cerebellum.MethodsA zoomed or reduced-field of view (rFOV) metabolite-cycled full-intensity magnetic resonance spectroscopic imaging (MRSI) at 3T with a nominal resolution of 62.5 μL was developed. Single-slice rFOV MRSI data were acquired from the cerebellum of 5 healthy subjects with a nominal resolution of 2.5□×□2.5□mm2 in 9□minutes 36. Spectra were quantified with LCModel. A spatially unbiased atlas template of the cerebellum was used for analyzing metabolite distributions in the cerebellum.ResultsThe high quality of the achieved spectra enabled to generate a high-resolution metabolic map of total N-acetylaspartate, total creatine, total choline, glutamate+glutamine and myo-inositol with Cramér-Rao lower bounds below 50%. A spatially unbiased atlas template of the cerebellum-based region of interest (ROIs) analysis resulted in spatially dependent metabolite distributions in 9 ROIs. The group-averaging across subjects in the Montreal Neurological Institute-152 template space allowed to generate a very high-resolution metabolite maps in the cerebellum.ConclusionThese findings indicate that very high-resolution metabolite probing of cerebellum is feasible using rFOV or zoomed MRSI at 3T.


2018 ◽  
Vol 8 (10) ◽  
pp. 1845 ◽  
Author(s):  
Yosuke Mizuno ◽  
Heeyoung Lee ◽  
Kentaro Nakamura

Distributed fiber-optic sensing based on Brillouin scattering has been extensively studied and many configurations have been developed so far. In this paper, we review the recent advances in Brillouin optical correlation-domain reflectometry (BOCDR), which is known as a unique technique with intrinsic single-end accessibility, high spatial resolution, and cost efficiency. We briefly discuss the advantages and disadvantages of BOCDR over other Brillouin-based distributed sensing techniques, and present the fundamental principle and properties of BOCDR with some special schemes for enhancing the performance. We also describe the recent development of a high-speed configuration of BOCDR (slope-assisted BOCDR), which offers a beyond-nominal-resolution detectability. The paper is summarized with some future prospects.


2018 ◽  
Author(s):  
Dimitry Tegunov ◽  
Patrick Cramer

The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens is currently largely uncoupled from subsequent data evaluation, correction and processing. Therefore, the acquisition strategy is difficult to optimize during data collection, often leading to suboptimal microscope usage and disappointing results. Here we provide Warp, a software for real-time evaluation, correction, and processing of cryo-EM data during their acquisition. Warp evaluates and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. Warp also rapidly corrects micrographs for global and local motion, and estimates the local defocus with the use of novel algorithms. The software further includes a deep learning-based particle picking algorithm that rivals human accuracy to make the pre-processing pipeline truly automated. The output from Warp can be directly fed into established tools for particle classification and 3D image reconstruction. In a benchmarking study we show that Warp automatically processed a published cryo-EM data set for influenza virus hemagglutinin, leading to an improvement of the nominal resolution from 3.9 Å to 3.2 Å. Warp is easy to install, computationally inexpensive, and has an intuitive and streamlined user interface.


2018 ◽  
Vol 11 (3) ◽  
pp. 1757-1776 ◽  
Author(s):  
Glenn M. Wolfe ◽  
S. Randy Kawa ◽  
Thomas F. Hanisco ◽  
Reem A. Hannun ◽  
Paul A. Newman ◽  
...  

Abstract. The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1–1000 km), potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40–90 % for a nominal resolution of 2 km or 16–35 % when averaged over a full leg (typically 30–40 km). CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.


2016 ◽  
Vol 33 (9) ◽  
pp. 1843-1858 ◽  
Author(s):  
Fabian Schloesser ◽  
Peter Cornillon ◽  
Kathleen Donohue ◽  
Brahim Boussidi ◽  
Emily Iskin

AbstractDetailed understanding of submesoscale processes and their role in global ocean circulation is constrained, in part, by the lack of global observational datasets of sufficiently high resolution. Here, the potential of thermosalinograph (TSG) and Visible Infrared Imager Radiometer Suite (VIIRS) data is evaluated, to characterize the submesoscale structure of the near-surface temperature fields in the Gulf Stream and Sargasso Sea. In addition to spectral density, the structure function is considered, a statistical measure less susceptible to data gaps, which are common in the satellite-derived fields. The structure function is found to be an unreliable estimator, especially for steep spectral slopes, nominally between 2 and 3, typical of the Gulf Stream and Sargasso regions. A quality-control threshold is developed based on the number and size of gaps to ensure reliable spectral density estimates. Analysis of the impact of gaps in the VIIRS data on the spectra shows that both the number of missing values and the size of gaps affect the results, and that the steeper the spectral slope the more significant the impact. Furthermore, the TSG, with a nominal resolution of 75 m, captures the spectral characteristics of the fields in both regions down to scales substantially smaller than 1 km, while the VIIRS fields, with a nominal resolution of 750 m, reproduce the spectra well down to scales of about 20 km in the Sargasso Sea and 5 km in the Gulf Stream. The scales at which the VIIRS and TSG spectra diverge are thought to be determined by sensor and retrieval noise.


Author(s):  
K. Jacobsen ◽  
H. Topan ◽  
A. Cam ◽  
M. Özendi ◽  
M. Oruc

Pleiades images are distributed with 50 cm ground sampling distance (GSD) even if the physical resolution for nadir images is just 70 cm. By theory this should influence the effective GSD determined by means of point spread function at image edges. Nevertheless by edge enhancement the effective GSD can be improved, but this should cause enlarged image noise. Again image noise can be reduced by image restoration. Finally even optimized image restoration cannot improve the image information from 70 cm to 50 cm without loss of details, requiring a comparison of Pleiades image details with other very high resolution space images. The image noise has been determined by analysis of the whole images for any sub-area with 5 pixels times 5 pixels. Based on the standard deviation of grey values in the small sub-areas the image noise has been determined by frequency analysis. This leads to realistic results, checked by test targets. On the other hand the visual determination of image noise based on apparently homogenous sub-areas results in too high values because the human eye is not able to identify small grey value differences – it is limited to just approximately 40 grey value steps over the available gray value range, so small difference in grey values cannot be seen, enlarging results of a manual noise determination. <br><br> A tri-stereo combination of Pleiades 1A in a mountainous, but partially urban, area has been analyzed and compared with images of the same area from WorldView-1, QuickBird and IKONOS. The image restoration of the Pleiades images is very good, so the effective image resolution resulted in a factor 1.0, meaning that the effective resolution corresponds to the nominal resolution of 50 cm. This does not correspond to the physical resolution of 70 cm, but by edge enhancement the steepness of the grey value profile across the edge can be enlarged, reducing the width of the point spread function. Without additional filtering edge enhancement enlarges the image noise, but the average image noise of approximately 1.0 grey values related to 8 bit images is very small, not indicating the edge enhancement and the down sampling of the GSD from 70 cm to 50 cm. So the direct comparison with the other images has to give the answer if the image quality of Pleiades images is on similar level as corresponding to the nominal resolution. As expected with the image geometry there is no problem. This is the case for all used space images in the test area, where the point identification limits the accuracy of the scene orientation.


Sign in / Sign up

Export Citation Format

Share Document