scholarly journals Evaporator Frosting in Refrigerating Appliances: Fundamentals and Applications

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5991
Author(s):  
Christian J. L. Hermes ◽  
Joel Boeng ◽  
Diogo L. da Silva ◽  
Fernando T. Knabben ◽  
Andrew D. Sommers

Modern refrigerators are equipped with fan-supplied evaporators often tailor-made to mitigate the impacts of frost accretion, not only in terms of frost blocking, which depletes the cooling capacity and therefore the refrigerator coefficient of performance (COP), but also to allow optimal defrosting, thereby avoiding the undesired consequences of condensate retention and additional thermal loads. Evaporator design for frosting conditions can be done either empirically through trial-and-error approaches or using simulation models suitable to predict the distribution of the frost mass along the finned coil. Albeit the former is mandatory for robustness verification prior to product approval, it has been advocated that the latter speeds up the design process and reduces the costs of the engineering undertaking. Therefore, this article is aimed at summarizing the required foundations for the design of efficient evaporators and defrosting systems with minimized performance impacts due to frosting. The thermodynamics, and the heat and mass transfer principles involved in the frost nucleation, growth, and densification phenomena are presented. The thermophysical properties of frost, such as density and thermal conductivity, are discussed, and their relationship with refrigeration operating conditions are established. A first-principles model is presented to predict the growth of the frost layer on the evaporator surface as a function of geometric and operating conditions. The relation between the microscopic properties of frost and their macroscopic effects on the evaporator thermo-hydraulic performance is established and confirmed with experimental evidence. Furthermore, different defrost strategies are compared, and the concept of optimal defrost is formulated. Finally, the results are used to analyze the efficiency of the defrost operation based on the net cooling capacity of the refrigeration system for different duty cycles and evaporator geometries.

2019 ◽  
Vol 969 ◽  
pp. 199-204
Author(s):  
Shaik Mohammad Hasheer ◽  
Kolla Srinivas

Now a days R134a can be used in domestic refrigerators and in air conditioning of automobiles. As per Kyoto protocol the usage of R134a is restricted due to their higher GWP value. The GWP value of this refrigerant is around 1430. So in this article, thermodynamic analysis of HFC-152a, HFO refrigerants-1234ze(E) and 1234yf was done in a household refrigeration system as direct substitute to HFC-134a.The performance of the household refrigerator was compared in terms of outlet temperature of the compressor, volumetric cooling capacity (VCC), refrigeration effect, work done by the compressor and coefficient of performance (COP). The entire analysis is carried out at various operating conditions of condenser and evaporator temperatures i.e. condensation temperature of 25°C,35°C & 45°C and evaporating temperatures ranging between −20°C to 10°C.From the theoretical results, it can be concluded that R1234yf can be used as a direct substitute to R134a.


Author(s):  
Vikas Kumar ◽  
Gulshan Sachdeva ◽  
Sandeep Tiwari ◽  
Parinam Anuradha ◽  
Vaibhav Jain

A conventional vapor compression refrigeration system (VCRS) cascaded with a heat-assisted ejector refrigeration system (ERS) has been experimentally analyzed. Cascading allows the VCRS to operate at lower condenser temperatures and thus achieve a higher coefficient of performance. In this cascaded system, the condenser of the vapor compression system does not dissipate its heat directly to the evaporator of the ERS; instead, water circulates between the condenser of VCRS and the evaporator of ERS to exchange the heat. Seven ejectors of different geometries have been used in the ERS; however, all the ejectors could not maintain thermal equilibrium at the desired operating conditions. The compressor of the cascaded VCRS consumed 1.3 times less power than the noncascaded VCRS. Furthermore, the cascaded system provided a maximum 87.74% improvement in COP over the noncascaded system for the same operating conditions. The performance of the system remained constant until the critical condenser pressure of the ERS.


2020 ◽  
Vol 15 (3) ◽  
pp. 398-408
Author(s):  
I Ouelhazi ◽  
Y Ezzaalouni ◽  
L Kairouani

Abstract From the last few years, the use of efficient ejector in refrigeration systems has been paid a lot of attention. In this article a description of a refrigeration system that combines a basic vapor compression refrigeration cycle with an ejector cooling cycle is presented. A one-dimensional mathematical model is developed using the flow governing thermodynamic equations based on a constant area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The current model is based on the NIST-REFPROP database for refrigerant property calculations. The model has basically been used to determine the effect of the ejector geometry and operating conditions on the performance of the whole refrigeration system. The results show that the proposed model predicts ejector performance, entrainment ratio and the coefficient of performance of the system and their sensitivity to evaporating and generating temperature of the cascade refrigeration cycle. The simulated performance has been then compared with the available experimental data from the literature for validation.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850025
Author(s):  
Hicham Boushaba ◽  
Abdelaziz Mimet

The aim of this paper is to provide a global study of an adsorption refrigeration machine driven by solar heat storage and collected by parabolic trough collector. The system operates with ammonia (as refrigerant) and activated carbon (as adsorbent). A mathematical model interpreting the progression of the heat and the mass transfer at each element of the prototype has been developed. The solar irradiation and the real ambient temperature variations corresponding to a usual summer day in Tetouan (Morocco) are considered. The system performance is evaluated trough specific cooling power (SCP) as well as solar coefficient of performance (SCOP), which was estimated by a dynamic simulation cycle. The pressure, temperature and adsorbed mass profiles in the Adsorber have been calculated. The effects of significant design and operating parameters on the system performance have been investigated. The results show the capability of our system to realize an encouraging performance and to overcome the intermittence of the adsorption refrigeration machines. For a daily solar irradiation of 18[Formula: see text]MJ[Formula: see text]m[Formula: see text] and operating conditions of evaporation temperature [Formula: see text]C, condensation temperature [Formula: see text]C and generation temperature [Formula: see text]C, the results show that the process could achieve an SCP of 115[Formula: see text]W[Formula: see text]kg[Formula: see text] and it could produce a daily specific cooling capacity of 3310[Formula: see text]kJ[Formula: see text]kg[Formula: see text], whereas its SCOP could attain 0.141.


2014 ◽  
Vol 501-504 ◽  
pp. 2282-2287 ◽  
Author(s):  
Yu Hang Liao ◽  
Wei Lu ◽  
Lie Pan

The performance of a solar-driven air-cooled ejector refrigeration system using ammonia as refrigerant with rated cooling capacity of 10.5kW was analyzed for air-conditioning purpose. The cooling capacity of the proposed system increases with the rising of indoor temperature and enhancement of solar irradiance, while decreases with the rising of outdoor temperature. The COP has similar changing trend with that of the cooling capacity except that it increases rapidly with the enhancement of solar irradiance firstlyand then become stable by and large after solar irradiance exceeding a certain value. The cooling capacity is 6.3~52kW and the COP 0.06~0.11 under the normal operating conditions with indoor temperature over 27, outdoor temperature below 38°C and solar irradiance surpassing 500 W/m2. The proposed system can match the climatic conditions in air-conditioning season of Nanning, a typical city in hot summer and warm winter region.


2020 ◽  
Vol 8 (5) ◽  
pp. 5557-5559

In this work experiment is performed by using titanium oxide (Tio2) nanoparticles at three different nanoaparticles containing lubricants 0.2g/l,0.4g/l as well as 0.6g/l . An experiment was performed by dispersing titanium oxide (Tio2) nanoparticles and the variables such as compressor work, Coefficient of performance (C.O.P) and refrigeration has been analysed.The experiment was conducted with R134a refrigerant under steady state conditions.Inclusion of Tio2 nanoparticles improved the coefficient as well as cooling capacity of presentation and the compressor work is get reduced.


2021 ◽  
Vol 39 (1A) ◽  
pp. 45-55
Author(s):  
Ahmed H. Al-Hassani ◽  
Alaa R. Al-Badri

The operation and performance of heat-pump systems are affected by indoor and outdoor operating conditions. Power consumption and system efficiency are related to evaporator and condenser working pressures. Intelligent controllers such as a proportional integral (PI) controller improve the performance of variable speed refrigeration systems (VSRs) with electronic expansion valve (EEV). Evaporator and condenser pressures affect the system power consumption and efficiency. In this study, the influence of evaporator and condenser temperatures on the performance of a variable speed refrigeration system with an EEV was experimentally investigated at constant cooling load. The experimental system comprises of a rotary compressor, shell-and-coil condenser, EEV, and shell-and-coil evaporator for one-ton cooling capacity with refrigerant R410. Compressor speed and EEV opening are controlled by a PI controller with two control loops and the refrigerant superheat (DS) is maintained at 7°C. The results show that at constant cooling capacity, the refrigerant flow rate rises with the increase in the compressor speed. The coefficient of performance (COP) is improved with low compressor speed. The System COP is increased by 3.3% with increasing evaporator inlet water temperature for 2°C due to the reduction in the compressor speed and compression ratio. High condenser inlet water temperature promotes the refrigerant subcooling.


Author(s):  
B. S. Bibin ◽  
Edison Gundabattini

The creation of new age refrigerants might be the answer to the issue of an Earth-wide rise in temperature. Hence, while choosing new refrigerants a careful process is required. The general effect of any refrigerant substance on global warming, energy efficiency, ozone depletion, cost-effectiveness, chemical stability, and safety ought to be assessed. This paper sums up the experimental and numerical investigations directed with the globally accepted R1234yf refrigerant. The paper’s principal points are to assess the capability of the hydro-fluoro-olefin (HFO) refrigerant mainly R1234yf utilized in the refrigeration system (vapor compression systems, domestic refrigeration system) and to explore its utilization as an eco-friendly refrigerant. In the vapor compression refrigeration system, the cooling capacity and coefficient of performance of R1234yf are found to be less, 9% and 11%, respectively compared to that of R134a. But the power consumption of the system with R1234yf increased between 1.6% and 6.7% when compared to R134a. This paper likewise assists with recognizing the gap in the past research works and explores the possibilities for additional works.


Author(s):  
I. N. Grace ◽  
S. A. Tassou

The impact of refrigeration systems on the environment can be reduced by (a) the use of alternative refrigerants which are less harmful to the environment and (b) the optimization of systems and control strategies to deliver increased levels of energy efficiency. Mathematical modelling offers the opportunity to test the performance of systems under different operating conditions and with alternative refrigerants. Dynamic models allow comparison of both transient and steady state behaviour and this is of particular importance for liquid chillers since these systems can operate under transient conditions for long periods. This paper covers the development of a general dynamic model for the simulation of liquid chillers. Brief descriptions of the system component models are given, including a semihermetic reciprocating compressor and thermostatic expansion valve as well as a shell-and-tube evaporator and condenser. The paper demonstrates the application of the model to simulate the performance of a liquid chiller retrofitted with a range of alternative refrigerants. The performance of the system is determined in terms of cooling capacity, power consumption and coefficient of performance for a range of different operating conditions. The relative performance of each refrigerant is discussed and the preferred alternative identified for typical applications.


Sign in / Sign up

Export Citation Format

Share Document