Research on Dynamic Rheological Parameters and Rheological Model of Soft Soil

2011 ◽  
Vol 261-263 ◽  
pp. 1070-1073
Author(s):  
Hua Hu ◽  
Meng Yun Zhu

The soft soil is covered widely in China. Soft soil has obvious rheological character, it will induce landslide etc serious geologic disasters, and make severe threaten to stability and security of projects. The dynamic loading such as earthquake, raging billow, vibration are the important factors and mainly power of inducing landslide geological disaster. The rheological parameters of soft soil are tested and analyzed under dynamic loading, and the rheological model of soft soil is established. All these have important theory and actual signification for us to reveal rheological dynamic mechanism of landslide geological disaster under dynamic loading.

2021 ◽  
Vol 73 (05) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203147, “Investigating Hole-Cleaning Fibers’ Mechanism To Improve Cutting Carrying Capacity and Comparing Their Effectiveness With Common Polymeric Pills,” by Mohammad Saeed Karimi Rad, Mojtaba Kalhor Mohammadi, SPE, and Kourosh Tahmasbi Nowtarki, International Drilling Fluids, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Hole cleaning in deviated wells is more challenging than in vertical wells because of the boycott effect or the eccentricity of the drillpipe. Poor hole cleaning can result in problems such as borehole packoff or excessive equivalent circulating density. The complete paper investigates a specialized fibrous material (Fiber 1) for hole-cleaning characteristics. The primary goal is to identify significant mechanisms of hole-cleaning fibers and their merits compared with polymeric high-viscosity pills. Hole-Cleaning Indices Based on a review of the literature, most effective parameters regarding hole cleaning in different well types were investigated. These parameters can be classified into the following five categories: - Well design (e.g., hole angle, drillpipe eccentricity, well trajectory) - Drilling-fluid properties (e.g., gel strength, mud weight) - Formation properties (e.g., lithology, cutting specific gravity, cuttings size and shape) - Hydraulic optimizations (e.g., flow regime, nozzle size, number of nozzles) - Drilling practices (e.g., drillpipe rotation speed, wellbore tortuosity, bit type, rate of penetration, pump rate) In this research, rheological parameters and parameters of the Herschel-Bulkley rheological model are considered to be optimization inputs to increase hole-cleaning efficiency of commonly used pills in drilling operations. The complete paper offers a detailed discussion of both the importance of flow regime and the role of the Herschel-Bulkley rheological model in reaching a better prognosis of drilling-fluid behavior at low shear rates. The properties of the fibrous hole-cleaning agent used in the complete paper are provided in Table 1. Test Method Two series of tests were performed. The medium of the first series is drilling water, with the goal of evaluating the efficiency of Fiber 1 in fresh pills. The second series of tests was per-formed with a simple polymeric mud as a medium common in drilling operations. Formulations and rheological properties of both test series are provided in Tables 4 and 5 of the complete paper, respectively.


2012 ◽  
Vol 33 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Magdalena Orczykowska ◽  
Marek Dziubiński

The Fractional derivative rheological model and the linear viscoelastic behavior of hydrocolloids This study was aimed at evaluating the possibility to use the Friedrich-Braun fractional derivative rheological model to assess the viscoelastic properties of xanthan gum with rice starch and sweet potato starch. The Friedrich-Braun fractional derivative rheological model allows to describe viscoelastic properties comprehensively, starting from the behaviour characteristic of purely viscous fluids to the behaviour corresponding to elastic solids. The Friedrich-Braun fractional derivative rheological model has one more virtue which distinguishes it from other models, it allows to determine the relationship between stress and strain and the impact of each of them on viscoelastic properties on the tested material. An analysis of the data described using the Friedrich-Braun fractional derivative rheological model allows to state that all the tested mixtures of starch with xanthan gum form macromolecular gels exhibiting behaviour typical of viscoelastic quasi-solid bodies. The Friedrich-Braun fractional derivative rheological model and 8 rheological parameters of this model allow to determine changes in the structure of the examined starch - xanthan gum mixtures. Similarly important is the possibility to find out the trend and changes going on in this structure as well as their causes.


2015 ◽  
Vol 16 (1) ◽  
pp. 105-117
Author(s):  
Artur Kurpiel ◽  
Adam Wysokowski

Abstract The creep test under the static loading, that allows to determine rheological properties of asphalt based on the creep curve, is the most effective test nowadays. Applied loads are non-destructive and allow to observe the course of the strain after the test load. The test can be carried out on compressing, shearing, bending as well as on triaxial test, that depends on the applied apparatus implementing different intensity [1, 2, 3, 4, 5, 6]. Based on the creep test, the stress of different properties can be specified. Among them there are valuable rheological properties based on selected viscoelascity models [1]. The properties of the viscoelascity models are relevant indexes depicting resistance to deformation. They can be used to forecast the wheel-truck in the accepted rheological model [1]. In this article it is shown the impact of different rheological properties of the viscoelacity model on the wheel-truck as well as the impact of different properties on shape and the course of the creep curve. The asphalt mixtures presented in this article are characterized by variable rheological properties. It is therefore difficult to determine which property mostly affects the size of the strain. However, the authors of this article attempted to analyse the change of the asphalt strain value of the different variables in particular rheological model, called Bürgers’s model.


2012 ◽  
Vol 226-228 ◽  
pp. 1513-1516 ◽  
Author(s):  
Li Qun Yuan ◽  
Hong Jia Liu ◽  
Yu Ming Men

Ground fissure is a kind of serious geological disaster. There will be more unprecedented challenges during the construction of the urban subway in ground fissures-developed zone. How to ensure the long-term operation safety of the subway crossing ground fissure belts are the first problems for the subway under construction in the cities with ground fissure developed. One of the important problems is that dynamic interaction and disaster effect control among ground fissure-stratum-subway tunnel under subway dynamic loading, which is also the important problem to be solved in the engineering. This problem involves the following three aspects: (a) the determination of subway dynamic loading; (b) the structure dynamic response of subway tunnel; (c) the interaction among stratum-ground fissure-subway tunnel. According to make a comment on these researches, some issues which are necessary to carry out in this field are suggested.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jiarui Chen ◽  
Hai Pu ◽  
Jianxiong Liu ◽  
Jihua Zhang ◽  
Peitao Qiu ◽  
...  

This study investigates water-sand bursting disasters associated with fractured rock that affect safe mining in the mining areas of Western China. A broken rock water-sand seepage rheological test device was developed, and rheological tests were conducted on multiple groups of broken rock samples with single-stage axial loading and different load levels. When the rheology of each group of broken rock samples was stable, water-sand mixed fluid was injected into the samples at a certain pressure gradient to conduct water-sand seepage tests on broken rock masses. It was found that when the porosity of a fractured rock mass is within a certain range, the water-sand mixed fluid does not completely pass through the fractured rock mass and some sand particles are filtered by the fractured rock sample. There is an exponential relationship between the sand breaking ability and the sand filtration ability of fractured rock and its initial porosity, and the permeability of fractured rock decreases by a certain extent after sand filtration. However, for different load levels, when the flow through a fractured rock mass tends to be stable, the final porosity of the fractured rock mass decreases exponentially with axial compression. Based on the classical Kelvin rheological model and the basic theory of fractional calculus, a new fractional rheological model has been proposed and the rheological parameters under different load levels were fitted to the model. The new fractional rheological model is better able to describe the rheological characteristics of broken mudstone.


2019 ◽  
Vol 23 (11) ◽  
pp. 4687-4695 ◽  
Author(s):  
Xiaobing Li ◽  
Jianyu Shu ◽  
Jun Wang ◽  
Hongtao Fu ◽  
Peng Wang ◽  
...  

2019 ◽  
Vol 71 (4) ◽  
pp. 525-531 ◽  
Author(s):  
Zhen Li ◽  
Xiaoli Zhao ◽  
Dezhi Zheng ◽  
Tingjian Wang ◽  
Le Gu ◽  
...  

Purpose This study aims to evaluate the rheological properties of aviation lubricating oil under conditions of heavy load, high speed and high temperature and the applicability of the classical rheological model under severe conditions. Design/methodology/approach A Chinese aviation lubricating oil was used and its traction curves were obtained using a new two-disk tribotester. Its rheological parameters were calculated based on empirical formulae. Moreover, the traction force was calculated based on the classical Eyring rheological model. Findings The traction curves are obtained with respect to contact pressure, temperature and rolling speed. The rheological parameters are significantly influenced by environmental factors, especially viscosity. The traction force calculated using the Eyring model is consistent with the experimental results. Originality/value A novel two-disk tribotester was designed using a gas bearing and speed–force closed-loop control to ensure measurement accuracy. The mechanism of rheological properties was analyzed and the applicability of the classical rheological model under severe conditions was verified. It provided an experimental and theoretical basis for expanding the application of classical rheological models under extreme conditions.


2013 ◽  
Vol 275-277 ◽  
pp. 299-303
Author(s):  
Hua Hu ◽  
Xiao Xu Zheng

The rheologic action of the soft soil could be accelerated by earthquake the dynamic loading, which induces more geotechnical engineering accidents and geologic disasters. The samples of marine deposit soft soil are collected in xiamen, and the rheologic rate, rheologic acceleration and rheologic strain under the dynamic loading of sinusoidal variation are tested and analyzed by using dynamic-triaxial device, and the influences of dynamic loading frequency and breadth to dynamic characteristics of soft soil are contrasted and analyzed. The research results have important academic signification for us to search rheologic dynamic characteristic of soft soil under dynamic loading.


2021 ◽  
Vol 51 (3) ◽  
pp. 245-263
Author(s):  
Jana DÉREROVÁ ◽  
Miroslav BIELIK ◽  
Dominika GODOVÁ ◽  
Andrej MOJZEŠ

We used 2D integrated geophysical modelling approach to calculate the temperature distribution in the lithosphere along profile VII passing through the Eastern Carpathians. With assigned rheological parameters of rocks and obtained temperature field, we derived the rheological model of the lithosphere along the studied profile. We have calculated the strength distribution in the lithosphere, based on the brittle and ductile deformation, for compressional and extensional regimes and the vertically integrated strength along the profile. To illustrate the strength distribution in different tectonic units, we have calculated the yield strength envelopes for chosen lithospheric columns. Ours results show that the dominant regime is compressional and the largest strength occurs on the boundary between the upper and lower crust. Along the studied profile, the strength decreases from its high values in the European platform towards its minimum in the Trans-European Suture Zone (TESZ). In the Eastern Carpathians, the strength increases, reaches two maxima, the first in the Outer Eastern Carpathians, and the second in the Inner Eastern Carpathians, where the highest values of strength can be observed. Another local maximum along the profile can be observed in the Apuseni Mountains, while the minimal strength is observed in the Transylvanian Basin. The diverse rheological behaviour of studied tectonic units seems to be in accordance with their lithospheric structure and tectonics.


Sign in / Sign up

Export Citation Format

Share Document