scholarly journals An otopetrin family proton channel promotes cellular acid efflux critical for biomineralization in a marine calcifier

2021 ◽  
Vol 118 (30) ◽  
pp. e2101378118
Author(s):  
William W. Chang ◽  
Ann-Sophie Matt ◽  
Marcus Schewe ◽  
Marianne Musinszki ◽  
Sandra Grüssel ◽  
...  

Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3. Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3−-independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (>8.0) and check-valve–like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Qingfeng Chen ◽  
Weizhong Zeng ◽  
Ji She ◽  
Xiao-chen Bai ◽  
Youxing Jiang

The otopetrin (OTOP) proteins were recently characterized as proton channels. Here we present the cryo-EM structure of OTOP3 from Xenopus tropicalis (XtOTOP3) along with functional characterization of the channel. XtOTOP3 forms a homodimer with each subunit containing 12 transmembrane helices that can be divided into two structurally homologous halves; each half assembles as an α-helical barrel that could potentially serve as a proton conduction pore. Both pores open from the extracellular half before becoming occluded at a central constriction point consisting of three highly conserved residues – Gln232/585-Asp262/Asn623-Tyr322/666 (the constriction triads). Mutagenesis shows that the constriction triad from the second pore is less amenable to perturbation than that of the first pore, suggesting an unequal contribution between the two pores to proton transport. We also identified several key residues at the interface between the two pores that are functionally important, particularly Asp509, which confers intracellular pH-dependent desensitization to OTOP channels.


1987 ◽  
Vol 7 (10) ◽  
pp. 761-769 ◽  
Author(s):  
C. Kempf ◽  
M. R. Michel ◽  
U. Kohler ◽  
H. Koblet

The mechanism of the process leading to cell-cell fusion induced by enveloped viruses at a mildly acidic pH is as yet unknown. In this report we demonstrate that the fusion events induced by three viruses of different families, namely Semliki Forest (togavirus), vesicular stomatitis (rhabdovirus) and influenza (orthomyxovirus), share common features. In all three systems a sudden drop of the intracellular pH—below the critical eextracellular pH required to trigger “fusion from within” (FFWI)—is observed. This influx of protons is specific and not due to a general leakiness of the plasma membrane, and therefore might be caused by the opening of a proton channel.


2020 ◽  
Vol 20 (17) ◽  
pp. 1696-1708 ◽  
Author(s):  
Athirah Hanim ◽  
Isa Naina Mohamed ◽  
Rashidi M. Pakri Mohamed ◽  
Srijit Das ◽  
Norefrina Shafinaz Md Nor ◽  
...  

Alcohol use disorder (AUD) is characterized by compulsive binge alcohol intake, leading to various health and social harms. Protein Kinase C epsilon (PKCε), a specific family of PKC isoenzyme, regulates binge alcohol intake, and potentiates alcohol-related cues. Alcohol via upstream kinases like the mammalian target to rapamycin complex 1 (mTORC1) or 2 (mTORC2), may affect the activities of PKCε or vice versa in AUD. mTORC2 phosphorylates PKCε at hydrophobic and turn motif, and was recently reported to be associated with alcohol-seeking behavior, suggesting the potential role of mTORC2-PKCε interactions in the pathophysiology of AUD. mTORC1 regulates translation of synaptic proteins involved in alcohol-induced plasticity. Hence, in this article, we aimed to review the molecular composition of mTORC1 and mTORC2, drugs targeting PKCε, mTORC1, and mTORC2 in AUD, upstream regulation of mTORC1 and mTORC2 in AUD and downstream cellular mechanisms of mTORCs in the pathogenesis of AUD.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


2021 ◽  
pp. 002193472110115
Author(s):  
Keisha-Khan Y. Perry ◽  
Anani Dzidzienyo

This essay provides a brief introduction to this special issue focused on the life and work of Black Brazilian scholar-activist Abdias Nascimento. The contributors include, Vera Lucia Benedito, Ollie Johnson, Zachary Morgan, Elisa Larkin Nascimento, and Cheryl Sterling who all participated in a 2015 conference at Africana Studies at Brown University. This group of scholars aptly illustrate that Nascimento had long contributed to the internationalization of Black Studies as a field in US academe and he was crucial in establishing Brazil as a central component of the Black World. The essays have much to teach us about Nascimento’s views on the relationship between art and politics, the role of military service in shaping his activism, the significance of black politicians in the reconceptualization of Brazilian democracy, and the importance of preserving archives and expanding our understanding of the Black radical tradition.


2014 ◽  
Vol 106 (2) ◽  
pp. 233a
Author(s):  
Laetitia Mony ◽  
Thomas K. Berger ◽  
Ehud Y. Isacoff

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Mingjuan Yin ◽  
Yongzhen Xiong ◽  
Dongmei Liang ◽  
Hao Tang ◽  
Qian Hong ◽  
...  

Abstract Background An estimated 5–10 % of healthy vaccinees lack adequate antibody response following receipt of a standard three-dose hepatitis B vaccination regimen. The cellular mechanisms responsible for poor immunological responses to hepatitis B vaccine have not been fully elucidated to date. Methods There were 61 low responders and 56 hyper responders involved in our study. Peripheral blood samples were mainly collected at D7, D14 and D28 after revaccinated with a further dose of 20 µg of recombinant hepatitis B vaccine. Results We found low responders to the hepatitis B vaccine presented lower frequencies of circulating follicular helper T (cTfh) cells, plasmablasts and a profound skewing away from cTfh2 and cTfh17 cells both toward cTfh1 cells. Importantly, the skewing of Tfh cell subsets correlated with IL-21 and protective antibody titers. Based on the key role of microRNAs involved in Tfh cell differentiation, we revealed miR-19b-1 and miR-92a-1 correlated with the cTfh cell subsets distribution and antibody production. Conclusions Our findings highlighted a decrease in cTfh cells and specific subset skewing contribute to reduced antibody responses in low responders.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 645
Author(s):  
Mohamed Ibrahem Elhawy ◽  
Sylvaine Huc-Brandt ◽  
Linda Pätzold ◽  
Laila Gannoun-Zaki ◽  
Ahmed Mohamed Mostafa Abdrabou ◽  
...  

Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.


Sign in / Sign up

Export Citation Format

Share Document