scholarly journals Ozone hole over poles : Current status

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 577-584
Author(s):  
S.L. JAIN

The ozone in the stratosphere is of great importance for very survival of life on the mother planet the Earth. Ozone acts as an umbrella and protects us from the harmful ultraviolet radiations coming from the Sun. The catalytic destruction of ozone by ClOx & NOx in general and ozone hole phenomenon over Antarctica during spring time in particular has generated unprecedented interest in monitoring of ozone and other trace constituents in the atmosphere. The satellites have proved to be an important tool to monitor the global ozone column on regular basis. The ozone data using various satellite platforms has been analyzed for the ozone hole studies over north and south poles. Also Ozone measurements were carried out at Maitri, Antarctica. The satellite data indicates that some recovery of ozone hole as a result of international efforts in reduction of use of CFCs which are the main culprit for ozone hole. However, it will be too early to conclude about ozone hole recovery. In the present communication current status of ozone hole will be discussed in detail.

Author(s):  
Michael B. McElroy

To this point, we have discussed the current status and future prospects of energy from coal, oil, natural gas, nuclear, wind, solar, and hydro. With the exception of the contribution from nuclear, the ultimate origin of the energy for all of these sources is the sun— energy captured millions of years ago by photosynthesis in the case of the fossil fuels (coal, oil, and natural gas), energy harvested from contemporary inputs in the case of wind and solar. We turn now to a discussion of the potential for generation of electricity from geothermal sources and ocean tides. Decay of radioactive elements in the Earth’s interior provides the dominant source for the former; energy extracted from the gravitational interaction of the Earth and moon is the primary source for the latter. There are two main contributions to the energy reaching the surface from the Earth’s interior. The first involves convection and conduction of heat from the mantle and core. The second reflects the contribution from decay of radioactive elements in the crust, notably uranium, thorium, and potassium. The composite geothermal source, averaged over the Earth, amounts to about 8 × 10– 2 W m– 2, approximately 3,000 times less than the energy absorbed from the sun. As a consequence of the presence of the internal source, temperatures increase at an average rate of about 25°C per kilometer as a function of depth below the Earth’s surface. The rate of increase is greater in regions that are tectonically active, notably in the western United States and in the region surrounding the Pacific Ocean (the so- called Ring of Fire) — less in others. Of particular interest in terms of harvesting the internal energy source to produce electricity are hydrothermal reservoirs, subsurface environments characterized by the presence of significant quantities of high- temperature water formed by exposure to lava or through contact with unusually hot crustal material. The water contained in hydrothermal reservoirs is supplied for the most part by percolation from the surface through overlying porous rock. The conditions required for production of these hydrothermal systems are relatively specialized.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2019 ◽  
Vol 15 (1) ◽  
pp. 73-77
Author(s):  
Valentina V. Ukraintseva ◽  
Keyword(s):  
The Sun ◽  

Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


Author(s):  
Charles Dickens ◽  
Dennis Walder

Dombey and Son ... Those three words conveyed the one idea of Mr. Dombey's life. The earth was made for Dombey and Son to trade in, and the sun and moon were made to give them light.' The hopes of Mr Dombey for the future of his shipping firm are centred on his delicate son Paul, and Florence, his devoted daughter, is unloved and neglected. When the firm faces ruin, and Dombey's second marriage ends in disaster, only Florence has the strength and humanity to save her father from desolate solitude. This new edition contains Dickens's prefaces, his working plans, and all the original illustrations by ‘Phiz’. The text is that of the definitive Clarendon edition. It has been supplemented by a wide-ranging Introduction, highlighting Dickens's engagement with his times, and the touching exploration of family relationships which give the novel added depth and relevance.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Elena Amato ◽  
Sabrina Casanova

Accelerated particles are ubiquitous in the Cosmos and play a fundamental role in many processes governing the evolution of the Universe at all scales, from the sub-AU scale relevant for the formation and evolution of stars and planets to the Mpc scale involved in Galaxy assembly. We reveal the presence of energetic particles in many classes of astrophysical sources thanks to their production of non-thermal radiation, and we detect them directly at the Earth as cosmic rays. In the last two decades both direct and indirect observations have provided us a wealth of new, high-quality data about cosmic rays and their interactions both in sources and during propagation, in the Galaxy and in the Solar System. Some of the new data have confirmed existing theories about particle acceleration and propagation and their interplay with the environment in which they occur. Some others have brought about interesting surprises, whose interpretation is not straightforward within the standard framework and may require a change of paradigm in terms of our ideas about the origin of cosmic rays of different species or in different energy ranges. In this article, we focus on cosmic rays of galactic origin, namely with energies below a few petaelectronvolts, where a steepening is observed in the spectrum of energetic particles detected at the Earth. We review the recent observational findings and the current status of the theory about the origin and propagation of galactic cosmic rays.


Among the celestial bodies the sun is certainly the first which should attract our notice. It is a fountain of light that illuminates the world! it is the cause of that heat which main­tains the productive power of nature, and makes the earth a fit habitation for man! it is the central body of the planetary system; and what renders a knowledge of its nature still more interesting to us is, that the numberless stars which compose the universe, appear, by the strictest analogy, to be similar bodies. Their innate light is so intense, that it reaches the eye of the observer from the remotest regions of space, and forcibly claims his notice. Now, if we are convinced that an inquiry into the nature and properties of the sun is highly worthy of our notice, we may also with great satisfaction reflect on the considerable progress that has already been made in our knowledge of this eminent body. It would require a long detail to enumerate all the various discoveries which have been made on this subject; I shall, therefore, content myself with giving only the most capital of them.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2019 ◽  
Vol 629 ◽  
pp. A139 ◽  
Author(s):  
S. Torres ◽  
M. X. Cai ◽  
A. G. A. Brown ◽  
S. P. Zwart

Comets in the Oort cloud evolve under the influence of internal and external perturbations, such as giant planets, stellar passages, and the Galactic gravitational tidal field. We aim to study the dynamical evolution of the comets in the Oort cloud, accounting for the perturbation of the Galactic tidal field and passing stars. We base our study on three main approaches; analytic, observational, and numerical. We first construct an analytical model of stellar encounters. We find that individual perturbations do not modify the dynamics of the comets in the cloud unless very close (<0.5 pc) encounters occur. Using proper motions, parallaxes, and radial velocities from Gaia DR2 and combining them with the radial velocities from other surveys, we then construct an astrometric catalogue of the 14 659 stars that are within 50 pc of the Sun. For all these stars we calculate the time and distance of closest approach to the Sun. We find that the cumulative effect of relatively distant (≤1 pc) passing stars can perturb the comets in the Oort cloud. Finally, we study the dynamical evolution of the comets in the Oort cloud under the influence of multiple stellar encounters from stars that pass within 2.5 pc of the Sun and the Galactic tidal field over ±10 Myr. We use the Astrophysical Multipurpose Software Environment (AMUSE), and the GPU-accelerated direct N-body code ABIE. We considered two models for the Oort cloud, compact (a ≤ 0.25 pc) and extended (a ≤ 0.5 pc). We find that the cumulative effect of stellar encounters is the major perturber of the Oort cloud for a compact configuration while for the extended configuration the Galactic tidal field is the major perturber. In both cases the cumulative effect of distant stellar encounters together with the Galactic tidal field raises the semi-major axis of ~1.1% of the comets at the edge of the Oort cloud up to interstellar regions (a > 0.5 pc) over the 20 Myr period considered. This leads to the creation of transitional interstellar comets (TICs), which might become interstellar objects due to external perturbations. This raises the question of the formation, evolution, and current status of the Oort cloud as well as the existence of a “cloud” of objects in the interstellar space that might overlap with our Oort cloud, when considering that other planetary systems should undergo similar processes leading to the ejection of comets.


1768 ◽  
Vol 58 ◽  
pp. 156-169 ◽  

It is demonstrated by Sir Isaac Newton in the Principia , that it is not the Earth's center, but the common center of gravity of the Earth and Moon, that describes the ecliptic; and that the Earth and Moon revolve in similar ellipses, about their common center of gravity.


Sign in / Sign up

Export Citation Format

Share Document