Indirect Estimation of Clastic Reservoir Rock Grain Size from Wireline Logs Using a Supervised Nearest Neighbor Algorithm: Preliminary Results

2021 ◽  
Author(s):  
Fatai Adesina Anifowose ◽  
Mokhles Mustafa Mezghani ◽  
Saeed Saad Shahrani

Abstract Reservoir rock textural properties such as grain size are typically estimated by direct visual observation of the physical texture of core samples. Grain size is one of the important inputs to petrophysical characterization, sedimentological facies classification, identification of depositional environments, and saturation models. A continuous log of grain size distribution over targeted reservoir sections is usually required for these applications. Core descriptions are typically not available over an entire targeted reservoir section. Physical core data may also be damaged during retrieval or due to plugging. Alternative methods proposed in literature are not sustainable due to their limitations in terms of input data requirements and inflexibility to apply them in environments with different geological settings. This paper presents the preliminary results of our investigation of a new methodology based on machine learning technology to complement and enhance the traditional core description and the alternative methods. We developed and optimized supervised machine learning models comprising K-nearest neighbor (KNN), support vector machines (SVM), and decision tree (DT) to indirectly estimate reservoir rock grain size for a new well or targeted reservoir sections from historical wireline logs and archival core descriptions. We used anonymized datasets consisting of nine wells from a clastic reservoir. Seven of the wells were used to train and optimize the models while the remaining two were reserved for validation. The grain size types range from clay to pebbles. The performance of the models confirmed the feasibility of this approach. The KNN, SVM, and DT models demonstrated the capability to estimate the grain size for the test wells by matching actual data with a minimum of 60% and close to 80% accuracy. This is an accomplishment taking into account the uncertainties inherent in the core analysis data. Further analysis of the results showed that the KNN model is the most accurate in performance compared to the other models. For future studies, we will explore more advanced classification algorithms and implement new class labeling strategies to improve the accuracy of this methodology. The attainment of this objective will further help to handle the complexity in the grain size estimation challenge and reduce the current turnaround time for core description.

2021 ◽  
Author(s):  
Fatai Adesina Anifowose ◽  
Saeed Saad Alshahrani ◽  
Mokhles Mustafa Mezghani

Abstract Wireline logs have been utilized to indirectly estimate various reservoir properties, such as porosity, permeability, saturation, cementation factor, and lithology. Attempts have been made to correlate Gamma-ray, density, neutron, spontaneous potential, and resistivity logs with lithology. The current approach to estimate grain size, the traditional core description, is time-consuming, labor-intensive, qualitative, and subjective. An alternative approach is essential given the utility of grain size in petrophysical characterization and identification of depositional environments. This paper proposes to fill the gap by studying the linear and nonlinear influences of wireline logs on reservoir rock grain size. We used the observed influences to develop and optimize respective linear and machine learning models to estimate reservoir rock grain size for a new well or targeted reservoir sections. The linear models comprised logistic regression and linear discriminant analysis while the machine learning method is random forest (RF). We will present the preliminary results comparing the linear and machine learning methods. We used anonymized wireline and archival core description datasets from nine wells in a clastic reservoir. Seven wells were used to train the models and the remaining two to test their classification performance. The grain size-types range from clay to granules. While sedimentologists have used gamma-ray logs to guide grain size qualification, the RF model recommended sonic, neutron, and density logs as having the most significant grain size in the nonlinear domain. The comparative results of the models' performance comparison showed that considering the subjectivity and bias associated with the visual core description approach, the RF model gave up to an 89% correct classification rate. This suggested looking beyond the linear influences of the wireline logs on reservoir rock grain size. The apparent relative stability of the RF model compared to the linear ones also confirms the feasibility of the machine learning approach. This is an acceptable and promising result. Future research will focus on conducting more rigorous quality checks on the grain size data, possibly introduce more heterogeneity, and explore more advanced algorithms. This will help to address the uncertainty in the grain size data more effectively and improve the models performance. The outcome of this study will reduce the limitations in the traditional core description and may eventually reduce the need for extensive core description processes.


2013 ◽  
Vol 838-841 ◽  
pp. 1331-1334
Author(s):  
Jing Ru Hou ◽  
Yun Feng Zhang ◽  
Qing Wang

Core observation and indoor thin section analysis as well as other technical means systematically studies the clastic reservoir rock characteristics of Shiwu Fault Depression.The study found that Shiwu Fault Depression deep buried clastic are composed mainly by fine sandstone and medium sandstone,and grain size are mainly controlled by sedimentary facies.Interstitial material is mainly carbonate and shale,secondly kaolinite.These characteristics provide a petrology foundation for accurately predicting the reservoir’s development of favorable zones in this region, and for further developing the deep buried clastic accumulation regularity.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Author(s):  
Yu Shao ◽  
Xinyue Wang ◽  
Wenjie Song ◽  
Sobia Ilyas ◽  
Haibo Guo ◽  
...  

With the increasing aging population in modern society, falls as well as fall-induced injuries in elderly people become one of the major public health problems. This study proposes a classification framework that uses floor vibrations to detect fall events as well as distinguish different fall postures. A scaled 3D-printed model with twelve fully adjustable joints that can simulate human body movement was built to generate human fall data. The mass proportion of a human body takes was carefully studied and was reflected in the model. Object drops, human falling tests were carried out and the vibration signature generated in the floor was recorded for analyses. Machine learning algorithms including K-means algorithm and K nearest neighbor algorithm were introduced in the classification process. Three classifiers (human walking versus human fall, human fall versus object drop, human falls from different postures) were developed in this study. Results showed that the three proposed classifiers can achieve the accuracy of 100, 85, and 91%. This paper developed a framework of using floor vibration to build the pattern recognition system in detecting human falls based on a machine learning approach.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


Sign in / Sign up

Export Citation Format

Share Document