scholarly journals Possibilities of suppressing the cytopathogenic effect of SARS-CoV-2 coronavirus according to the results of the antiviral activity of Cytovir®-3 in vitro study

2021 ◽  
Vol 66 (5-6) ◽  
pp. 4-10
Author(s):  
V. S. Smirnov ◽  
I. A. Leneva ◽  
T. A. Kudryavtseva ◽  
E. B. Fayzuloev ◽  
V. A. Zaplutanov ◽  
...  

Introduction. The COVID-19 pandemic has stimulated the search for drugs with specific antiviral activity against the new pathogenic strain of the SARS-CoV-2 coronavirus. First of all, scientific search was aimed at studying drugs with already proven efficacy against influenza and ARVI. The aim of this work was to study the antiviral activity of Cytovir®-3 in vitro in relation to the cytopathogenic effect of the SARS-CoV-2 virus. Material and methods. The antiviral activity of the drug Cytovir®-3 against the SARS-CoV-2 virus was studied in experimental models in vitro on Vero CCL81 cell culture (ATCC). The maximum tolerated concentration and the 50% cytotoxic dose were determined using a quantitative microculture tetrazolium test assay to calculate the working range of the concentrations of the test drug. Results and discussion. As a result of the study, it was shown that the greatest activity of the drug was manifested when it was added to the cells 24 hours before and 1 hour and 24 hours after viral infection, the inhibition level reached 53% (>IC50) at the drug concentrations of 105, 55, and 85 µg/ml, respectively. Cytovir®-3 suppressed the viral activity of SARS-CoV-2 in the dose range from 10 µg/ml to 105 µg/ml under the indicated infection conditions. It was found that the drug did not exhibit cytotoxic effects on the Vero cell culture in the range of antiviral doses. Conclusion. The antiviral activity of Cytovir®-3 against the SARS-CoV-2 virus has been proven due to the achievement of IC50, which is below the maximum tolerated dose of 149 µg/ml.

2021 ◽  
Vol 66 (2) ◽  
pp. 123-128
Author(s):  
S. Ya. Loginova ◽  
V. N. Shсhukina ◽  
S. V. Savenko ◽  
S. V. Borisevich

Introduction. The pandemic spread of a new coronavirus infection, COVID-19, has caused a global emergency and attracted the attention of public health professionals and the population of all countries. A significant increase in the number of new cases of SARS-CoV-2 infection demonstrates the urgency of finding drugs effective against this pathogen.The aim of this work was to evaluate the in vitro antiviral efficacy of human recombinant alpha-2b interferon (IFN-α2b) against SARS-CoV-2 virus.Material and methods. The experiments had been carried out on Vero Cl008, the continuous line of African green monkey (Chlorocebus sabaeus) kidney cells. The effectiveness of the drugs was assessed by the suppression of viral reproduction in vitro. The biological activity was determined using titration of a virus-containing suspension in a Vero Cl008 cell culture by the formation of negative colonies.Results. The antiviral efficacy of the IFN-α2b-based medications, which have a high safety profile and proven efficacy in the prevention and treatment of influenza and acute respiratory viral infections (ARVI), has been studied against the new pandemic SARS-CoV-2 virus in vitro experiments in Vero C1008 cell culture. IFN-α2b effectively inhibits the reproduction of the virus when applied both 24 hrs before and 2 hrs after infection. In the IFN-α2b concentration range 102–106 IU/ml a complete suppression of the reproduction of the SARS-CoV-2 virus had been demonstrated.Discussion. IFN-α2b demonstrated in vitro high antiviral activity against SARS-CoV-2. In addition, the substance has a high chemotherapeutic index (>1000).Conclusion. Medications for intranasal use based on IFN-α2b have high antiviral activity and are promising drugs for in vivo study in terms of prevention and treatment of COVID-19.


2017 ◽  
Vol 62 (4) ◽  
pp. 168-173
Author(s):  
A. V. Sanin ◽  
P. G. Deryabin ◽  
A. N. Narovlyansky ◽  
A. V. Pronin ◽  
T. N. Kozhevnikova

The antiviral activity of Phosprenyl and Gamapren in vitro against highly pathogenic strain of avian influenza H5N1 virus was studied. Inoculation of the virus to the susceptible cell culture led to development of the cytopathogenic effect. Preliminary introduction of Phosprenyl and Gamapren an hour prior to infecting the cells with virus 10.0 TCID50 dose completely inhibited the cytopathogenic activity of the virus. At higher doses of virus (100.0 TCID50) significant inhibition of the infectious activity of the virus was observed: 70% of infected cells survived under the action of Phosprenyl, and 90% under the action of Gamapren. With the introduction of the preparations simultaneously with the infection of cells with virus at a dose of 10.0 TCID50 virtually 100% of infected cells survived, while in control cultures death of 100% of the cells occurred. After infection with the virus at a dose of 100.0 TCID50 Phosprenyl and Gamapren caused 50% protection of the cells. The antiviral effect of the drugs Phosprenyl and Gamapren may be associated not only with their virulicidal, but with anti-viral activity as well.


1991 ◽  
Vol 252 ◽  
Author(s):  
M. J. A. van Luyn ◽  
P. B. van Wachem ◽  
L. H. H. Olde Damink ◽  
P. J. Dijkstra ◽  
J. Feijen ◽  
...  

ABSTRACTWe investigated the in vitro cytotoxicity of commercially available hexamethylenediisocyanate-crosslinked dermal sheep collagen (HDSC). HDSC was found to induce medium cytotoxic effects, as measured with methylcellulose cell culture. Apart from primary cytotoxicity, due to direct release of (extractable) cytotoxic products, HDSC was found to contain secondary cytotoxicity, possibly released by enzymatic interactions. In this study we found proof for this hypothesis, by exposing extracted HDSC to enzyme-containing medium. Furthermore we observed, that enzymatic pre-treatment can remove all secondary cytotoxic products, possibly due to detachment of pendants, which are still coupled to fragments of collagen molecules. The possibility of enzymatic pretreatment of HDSC, to obtain a non-cytotoxic/biocompatible material, may be important for in vivo applications.


2008 ◽  
Vol 5 (3) ◽  
pp. 391-394 ◽  
Author(s):  
Baghdad Science Journal

The studies on the antiviral compound chalcone in vitro in both tissue and organ culture systems against rubella virus glass that this compound relatively non toxic to the cell culture and organ culture of the concentration of 8 ug/ml or less, chalcone have significantly antiviral activity against rubella virus in tissue culture and organ culture. We find that a concentration of 0.03ug/ml or more inhibit the IOOTCID50 of rubella virus. The therapeutic index (TI) used in this study to evaluate the drug, the (TI) which is the ratio of the dose of drug which is just toxic (Maximum tolerated dose) to the dose which is just effective (Minimum effective dose). If this index is one or less it not possible to use the drug under the conditions outlined without causing side effect, if the index is larger than the margin of safety is accordingly great, the TI of chalcone against rubella virus more than 70, therefore this compound if used in man have no side effect .


2021 ◽  
Vol 12 (3) ◽  
pp. 727-738
Author(s):  
Jorge L. Arias-Arias ◽  
Francisco Vega-Aguilar ◽  
Dihalá Picado-Soto ◽  
Eugenia Corrales-Aguilar ◽  
Gilbert D. Loría

Zika virus (ZIKV) is a mosquito-borne flavivirus in which human infection became relevant during recent outbreaks in Latin America due to its unrecognized association with fetal neurological disorders. Currently, there are no approved effective antivirals or vaccines for the treatment or prevention of ZIKV infections. Amantadine and rimantadine are approved antivirals used against susceptible influenza A virus infections that have been shown to have antiviral activity against other viruses, such as dengue virus (DENV). Here, we report the in vitro effectiveness of both amantadine and rimantadine hydrochlorides against ZIKV replication, resulting in a dose-dependent reduction in viral titers of a ZIKV clinical isolate and two different ZIKV reference strains. Additionally, we demonstrate similar in vitro antiviral activity of these drugs against DENV-1 and yellow fever virus (YFV), although at higher drug concentrations for the latter. ZIKV replication was inhibited at drug concentrations well below cytotoxic levels of both compounds, as denoted by the high selectivity indexes obtained with the tested strains. Further work is absolutely needed to determine the potential clinical use of these antivirals against ZIKV infections, but our results suggest the existence of a highly conserved mechanism across flavivirus, susceptible to be blocked by modified more specific adamantane compounds.


2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Keivan Zandi ◽  
Elissa Ramedani ◽  
Khosro Mohammadi ◽  
Saeed Tajbakhsh ◽  
Iman Deilami ◽  
...  

Antiviral drug resistance is one of the most common problems in medicine, and, therefore, finding new antiviral agents, especially from natural resources, seems to be necessary. This study was designed to assay the antiviral activity of curcumin and its new derivatives like gallium-curcumin and Cu-curcumin on replication of HSV-1 in cell culture. The research was performed as an in vitro study in which the antiviral activity of different concentrations of three substances including curcumin, Gallium-curcumin and Cu-curcumin were tested on HSV-1. The cytotoxicity of the tested compounds was also evaluated on the Vero cell line. The CC50 values for curcumin, gallium-curcumin and Cu-curcumin were 484.2 μg/mL, 255.8 μg/mL and 326.6 μg/mL, respectively, and the respective IC50 values 33.0 μg/mL, 13.9 μg/mL and 23.1 μg/mL. The calculated SI values were 14.6, 18.4 and 14.1, respectively. The results showed that curcumin and its new derivatives have remarkable antiviral effects on HSV-1 in cell culture.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Pantea Kiani ◽  
Andrew Scholey ◽  
Thomas A. Dahl ◽  
Lauren McMann ◽  
Jacqueline M. Iversen ◽  
...  

The 2019 coronavirus infectious disease (COVID-19) is caused by infection with the new severe acute respiratory syndrome coronavirus (SARS-CoV-2). Currently, the treatment options for COVID-19 are limited. The purpose of the experiments presented here was to investigate the effectiveness of ketotifen, naproxen and indomethacin, alone or in combination, in reducing SARS-CoV-2 replication. In addition, the cytotoxicity of the drugs was evaluated. The findings showed that the combination of ketotifen with indomethacin (SJP-002C) or naproxen both reduce viral yield. Compared to ketotifen alone (60% inhibition at EC50), an increase in percentage inhibition of SARS-CoV-2 to 79%, 83% and 93% was found when co-administered with 25, 50 and 100 μM indomethacin, respectively. Compared to ketotifen alone, an increase in percentage inhibition of SARS-CoV-2 to 68%, 68% and 92% was found when co-administered with 25, 50 and 100 μM naproxen, respectively. For both drug combinations the observations suggest an additive or synergistic effect, compared to administering the drugs alone. No cytotoxic effects were observed for the administered dosages of ketotifen, naproxen, and indomethacin. Further research is warranted to investigate the efficacy of the combination of ketotifen with indomethacin (SJP-002C) or naproxen in the treatment of SARS-CoV-2 infection in humans.


2021 ◽  
Vol 22 (12) ◽  
pp. 6225
Author(s):  
Poonam Trivedi ◽  
Rui Liu ◽  
Hongjie Bi ◽  
Chunlin Xu ◽  
Jessica M. Rosenholm ◽  
...  

The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.


2021 ◽  
Author(s):  
Aleksandr Ianevski ◽  
Rouan Yo ◽  
Hilde Lysvand ◽  
Gunnveig Grodeland ◽  
Nicolas Legrand ◽  
...  

SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here we address these challenges by combining Pegasys (IFNa) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNa and that both Serpin E1 and camostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.


2019 ◽  
Vol 8 (4) ◽  
pp. 9-15
Author(s):  
N. A. Mazurkova ◽  
M. A. Protsenko ◽  
E. I. Filippova ◽  
T. A. Kukushkina ◽  
G. I. Vysochina ◽  
...  

Introduction. The abolition of smallpox vaccination after its elimination in 1980 led to a decrease in the immunocompromised immunity in humans. Zoonotic monkeypox, camelpox, buffalopox and cowpox viruses that are close to the variola virus also pose a danger to humans. In Russia today there are no effective and safe medicines for the prevention and treatment of smallpox and other orthopoxvirus infections in humans and animals. The Lady's mantle (Alchemilla vulgaris) is a promising source for the development of new antiviral drugs. Previous studies have found that Alchemilla vulgaris shows activity against influenza virus and herpes simplex virus.Aim. The aim of this work was to study the chemical composition and antiviral activity of extracts from the roots and the grass of Alchemilla vulgaris against orthopoxviruses.Materials and methods. Qualitative analysis of the samples was performed by high performance liquid chromatography. Quantitative analysis was performed using a complex of spectrophotometric methods. To determine the toxicity and antiviral activity of experimental samples from Alchemilla vulgaris in vitro, a transplantable Vero cell culture was used. Antiviral activity of the obtained preparations was evaluated by reducing the infectivity (titer) of orthopoxviruses in the monolayer of Vero cells infected with orthopoxviruses in the presence of preparations with different concentrations relative to the cell culture infected with orthopoxviruses without the preparations.Results and discussion. It was shown that the experimental sample from Alchemilla vulgaris obtained by the method of ethyl acetate extraction from the roots of the studied plant and purified with chloroform contains mainly catechins and leucoanthocyanins (70 %). In parallel, extract from the raw mass of the grass of the plant purified with chloroform and ethanol contains the amount of flavonoids (71 %). Wherein the content of flavonoids in unpurified ethanol extracts from the roots and the grass of Alchemilla vulgaris composed 5 % and 6 %, respectively. It was revealed that purified preparations obtained from Alchemilla vulgaris roots when using ethyl acetate and ethanol as extractants showed antiviral activity against vaccinia virus and ectromelia virus, as well as preparations obtained from grass by ethanol extraction.Conclusion. Thus, purified ethyl acetate extracts from the roots and ethanol extracts from the wet grass mass of Alchemilla vulgaris exhibit antiviral activity against orthopoxviruses in vitro.  


Sign in / Sign up

Export Citation Format

Share Document