acquired hearing loss
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 1-14
Author(s):  
Peter S. Steyger

Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.


Author(s):  
Amanda Henton ◽  
Thanos Tzounopoulos

Tinnitus is a pervasive public health issue that affects approximately 15% of the United States population. Similar estimates have also been shown on a global scale, with similar prevalence found in Europe, Asia, and Africa. The severity of tinnitus is heterogeneous, ranging from mildly bothersome to extremely disruptive. In the United States, approximately 10-20% of individuals who experience tinnitus report symptoms that severely reduce their quality of life. Due to the huge personal and societal burden, in the last twenty years a concerted effort on basic and clinical research has significantly advanced our understanding and treatment of this disorder. Yet, neither full understanding, nor cure exists. We know that tinnitus is the persistent involuntary phantom percept of internally-generated non-verbal noises and tones, which in most cases is initiated, by acquired hearing loss and maintained only when this loss is coupled with distinct neuronal changes in auditory and extra-auditory brain networks. Yet, the exact mechanisms and patterns of neural activity that are necessary and sufficient for the perceptual generation and maintenance of tinnitus remain incompletely understood. Combinations of animal model and human research will be essential in filling these gaps. Nevertheless, the existing progress in investigating the neurophysiological mechanisms has improved current treatment and highlighted novel targets for drug development and clinical trials. The aim of this review is to thoroughly discuss the current state of human and animal tinnitus research, outline current challenges, and highlight new and exciting research opportunities.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Maryam Karimi-Boroujeni ◽  
Ali Zahedi-Amiri ◽  
Kevin M. Coombs

Hearing loss, one of the most prevalent chronic health conditions, affects around half a billion people worldwide, including 34 million children. The World Health Organization estimates that the prevalence of disabling hearing loss will increase to over 900 million people by 2050. Many cases of congenital hearing loss are triggered by viral infections during different stages of pregnancy. However, the molecular mechanisms by which viruses induce hearing loss are not sufficiently explored, especially cases that are of embryonic origins. The present review first describes the cellular and molecular characteristics of the auditory system development at early stages of embryogenesis. These developmental hallmarks, which initiate upon axial specification of the otic placode as the primary root of the inner ear morphogenesis, involve the stage-specific regulation of several molecules and pathways, such as retinoic acid signaling, Sonic hedgehog, and Wnt. Different RNA and DNA viruses contributing to congenital and acquired hearing loss are then discussed in terms of their potential effects on the expression of molecules that control the formation of the auditory and vestibular compartments following otic vesicle differentiation. Among these viruses, cytomegalovirus and herpes simplex virus appear to have the most effect upon initial molecular determinants of inner ear development. Moreover, of the molecules governing the inner ear development at initial stages, SOX2, FGFR3, and CDKN1B are more affected by viruses causing either congenital or acquired hearing loss. Abnormalities in the function or expression of these molecules influence processes like cochlear development and production of inner ear hair and supporting cells. Nevertheless, because most of such virus–host interactions were studied in unrelated tissues, further validations are needed to confirm whether these viruses can mediate the same effects in physiologically relevant models simulating otic vesicle specification and growth.


2020 ◽  
pp. 132-136
Author(s):  
Hiroshi Ikeda ◽  
Shigeyuki Minami

Hearing impaired persons are required to drive with hearing aids to supplement their hearing ability, however, there has not been sufficient discussion regarding the impact of the use of a hearing aid on driving a vehicle. In order to investigate the actual usage and driving conditions of using hearing aids while driving a vehicle, this paper uses a questionnaire to survey (1) how easy it is to drive when wearing hearing aids, and (2) how often hearing aids are not worn while driving. Concerning the ease of driving when wearing a hearing aid, it was suggested that people with congenital hearing loss were more likely to rely on visual information, and those with acquired hearing loss continue to use their experience of hearing. When the level of disability is high, it is difficult to drive when using the hearing aid, and when the disability level is low, it is easier to drive. Regarding the frequency of driving without wearing hearing aids, about 60 % of respondents had such an experience. Those who often drive without hearing aids had experienced headaches due to noise from wearing hearing aids compared to those who wear hearing aids at all times. Hearing aids are necessary assistive devices for hearing impaired persons to obtain hearing information, and to provide a safe driving environment. Therefore, this paper addresses issues to maintain a comfortable driving environment while wearing a hearing aid.


Author(s):  
Lucas Resende Lucinda Mangia ◽  
Luiz Otávio de Mattos Coelho ◽  
Bettina Carvalho ◽  
Adriana Kosma Pires de Oliveira ◽  
Rogerio Hamerschmidt

Abstract Introduction Otosclerosis is a primary osteodystrophy of the otic capsule, frequently responsible for acquired hearing loss in adults. Although the diagnostic value of imaging investigations in otosclerosis is debatable, they might still be employed with different goals within the context of the disease. Objectives The present paper aims to review the most recent literature on the use of imaging studies in otosclerosis for the most varied purposes, from routine application and differential diagnosis to prognostic prediction and investigation of surgical failure. Data Synthesis The diagnosis of otosclerosis is usually clinical, but computed tomography (CT) is paramount in particular cases for the differential diagnosis. The routine use, however, is not supported by strong evidence. Even so, there is growing evidence of the role of this method in surgical planning and prediction of postoperative prognosis. In specific scenarios, for example when superior semicircular canal dehiscence (SSCD) syndrome is suspected or in surgical failure, CT is crucial indeed. Magnetic resonance imaging (MRI), however, has limited – although important – indications in the management of individuals with otosclerosis, especially in the evaluation of postoperative complications and in the follow-up of medical treatment in active ostosclerosis. Conclusion Imaging studies have a broad range of well-established indications in otosclerosis. Besides, although the routine use of CT remains controversial, the most recent papers have shed light into new potential benefits of imaging prior to surgery.


2020 ◽  
Vol 87 ◽  
pp. 106030
Author(s):  
Karen Sparrow ◽  
Christopher Lind ◽  
Willem van Steenbrugge

Author(s):  
Rita Rosati ◽  
Samson Jamesdaniel

Pollutants that contaminate the natural or built environment adversely affect the health of living organisms. Although exposure to many of them could be avoided or minimized by careful preventive measures, it is impossible to totally avoid exposure to all pollutants. Ototraumatic agents, such as noise, chemicals, and heavy metals, are pervasive pollutants, mostly produced by human activity, and are critical factors in inducing acquired hearing loss. More importantly, exposure to these pollutants often occurs concurrently and, therefore, the synergistic interactions potentiate auditory dysfunction in susceptible individuals. Epidemiological studies have provided compelling data on the incidence of auditory dysfunction after exposure to a number of ototraumatic agents in the environment, while animal studies have offered crucial insights for understanding the underlying molecular mechanisms. Together, they provide a framework for developing effective interventional approaches for mitigating the adverse impacts of environmental or occupational exposure to ototraumatic agents. This article provides a brief overview of the common pollutants that cause hearing loss.


Sign in / Sign up

Export Citation Format

Share Document