thermophilic organisms
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
pp. 975-989
Author(s):  
Moulay Abdelmonaim El Hidan ◽  
Kholoud Kahime ◽  
Mehdi Ait Laaradia ◽  
Btissam Bouimeja ◽  
Fadoua Aabadi ◽  
...  

Every year, more than 1 million cases of scorpion envenomation are reported worldwide. Scorpions are thermophilic organisms. They are sensitive to weather and climate conditions, in such a way the ongoing trends of increasing temperature and more variable weather could lead to scorpionism spreading. There has been considerable debate as to whether global envenomation will be impacted by climate change which has focused on snake and spider envenomation risk. This debate didn't give enough interest to scorpion stings and its burden risks, in spite their widespread potential effects in many regions. Here, the authors review how climate and climate change may impact scorpion activity as well as scorpion envenomation. They contrast ecological and behavioral characteristics of these arthropods, and how weather, climate, climate change, and socioeconomic factors may have very different impacts on the spatiotemporal occurrence and abundance of scorpions, and the resulting scorpion envenomation.


Author(s):  
Thomas Bessonnet ◽  
Aline Mariage ◽  
Jean-Louis Petit ◽  
Virginie Pellouin ◽  
Adrien Debard ◽  
...  

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nitphym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5–8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L–1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L–1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.


2021 ◽  
Vol 12 ◽  
Author(s):  
Florence Garnier ◽  
Mohea Couturier ◽  
Hélène Débat ◽  
Marc Nadal

The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maximilian Fichtner ◽  
Stefan Schuster ◽  
Heiko Stark

AbstractAging research is a very popular field of research in which the deterioration or decline of various physiological features is studied. Here we consider the molecular level, which can also have effects on the macroscopic level. The proteinogenic amino acids differ in their susceptibilities to non-enzymatic modification. Some of these modifications can lead to protein damage and thus can affect the form and function of proteins. For this, it is important to know the distribution of amino acids between the protein shell/surface and the core. This was investigated in this study for all known structures of peptides and proteins available in the PDB. As a result, it is shown that the shell contains less susceptible amino acids than the core with the exception of thermophilic organisms. Furthermore, proteins could be classified according to their susceptibility. This can then be used in applications such as phylogeny, aging research, molecular medicine, and synthetic biology.


2020 ◽  
Vol 8 (6) ◽  
pp. 880
Author(s):  
Simone Di Piazza ◽  
Jos Houbraken ◽  
Martin Meijer ◽  
Grazia Cecchi ◽  
Bart Kraak ◽  
...  

Composting is a complex process in which various micro-organisms, mainly fungi and bacteria, are involved. The process depends on a large number of factors (biological, chemical, and physical) among which microbial populations play a fundamental role. The high temperatures that occur during the composting process indicate the presence of thermotolerant and thermophilic micro-organisms that are key for the optimization of the process. However, the same micro-organisms can be harmful (allergenic, pathogenic) for workers that handle large quantities of material in the plant, and for end users, for example, in the indoor environment (e.g., pots in houses and offices). Accurate knowledge of thermotolerant and thermophilic organisms present during the composting stages is required to find key organisms to improve the process and estimate potential health risks. The objective of the present work was to study thermotolerant and thermophilic mycobiota at different time points of compost maturation. Fungi were isolated at four temperatures (25, 37, 45, and 50 °C) from compost samples collected at five different steps during a 21-day compost-maturation period in an active composting plant in Liguria (northwestern Italy). The samples were subsequently plated on three different media. Our results showed a high presence of fungi with an order of magnitude ranging from 1 × 104 to 3 × 105 colony-forming units (CFU) g−1. The isolated strains, identified by means of specific molecular tools (ITS, beta-tubulin, calmodulin, elongation factor 1-alpha, and LSU sequencing), belonged to 45 different species. Several thermophilic species belonging to genera Thermoascus and Thermomyces were detected, which could be key during composting. Moreover, the presence of several potentially harmful fungal species, such as Aspergillus fumigatus, A. terreus, and Scedosporium apiospermum, were found during the whole process, including the final product. Results highlighted the importance of surveying the mycobiota involved in the composting process in order to: (i) find solutions to improve efficiency and (ii) reduce health risks.


2020 ◽  
Vol 71 (13) ◽  
pp. 3827-3842 ◽  
Author(s):  
Anton Puzorjov ◽  
Alistair J McCormick

Abstract The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment–proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.


2020 ◽  
Author(s):  
Maximilian Fichtner ◽  
Stefan Schuster ◽  
Heiko Stark

AbstractAging research is a very popular field of research in which the gradual transformation of functional states into dysfunctional states are studied. Here we only consider the molecular level, which can also have effects on the macroscopic level. It is known that the proteinogenic amino acids differ in their modification susceptibilities and this can affect the function of proteins. For this it is important to know the distribution of amino acids between the protein surface/shell and the core. This was investigated in this study for all known structural data of peptides and proteins. As a result it is shown that the surface contains less susceptible amino acids than the core with the exception of thermophilic organisms. Furthermore, proteins could be classified according to their susceptibility. This can then be used in applications such as phylogeny, aging research, molecular medicine and synthetic biology.


2020 ◽  
Vol 5 (2) ◽  
pp. 1-2
Author(s):  
Ji-Dong Gu ◽  

Identification and prediction of the current ongoing and future research trends are critically important to research scientists to be on track of the significantly important topics and also ahead of the others if all possible. Such information can be extrapolated by mining the existing data available from different databases to delineate the important research topics that many are working on and also the emerging ones that attract attention. Because of the readily availability of online published articles in Open Access mode and instant information in real time on viewing number, read and citations, a simple summary of the papers published in this journal over the past 4 years indicated clearly the most viewed research articles and topics are in line with the main stream information available, namely novel dehalogenase, thermophilic organisms and biotechnological application in bioleaching, souring inhibition in oil reservoirs, and the current public interest on plastics. This information can be used in refining one’s specific research to target for popularity and visibility.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Marko Šnajder ◽  
Andrés Felipe Carrillo Rincón ◽  
Vasilka Magdevska ◽  
Miha Bahun ◽  
Luka Kranjc ◽  
...  

Abstract Background The thermostable serine protease pernisine originates from the hyperthermophilic Archaeaon Aeropyrum pernix and has valuable industrial applications. Due to its properties, A. pernix cannot be cultivated in standard industrial fermentation facilities. Furthermore, pernisine is a demanding target for heterologous expression in mesophilic heterologous hosts due to the relatively complex processing step involved in its activation. Results We achieved production of active extracellular pernisine in a Streptomyces rimosus host through heterologous expression of the codon-optimised gene by applying step-by-step protein engineering approaches. To ensure secretion of fully active enzyme, the srT signal sequence from the S. rimosus protease was fused to pernisine. To promote correct processing and folding of pernisine, the srT functional cleavage site motif was fused directly to the core pernisine sequence, this way omitting the proregion. Comparative biochemical analysis of the wild-type and recombinant pernisine confirmed that the enzyme produced by S. rimosus retained all of the desired properties of native pernisine. Importantly, the recombinant pernisine also degraded cellular and infectious bovine prion proteins, which is one of the particular applications of this protease. Conclusion Functional pernisine that retains all of the advantageous properties of the native enzyme from the thermophilic host was successfully produced in a S. rimosus heterologous host. Importantly, we achieved extracellular production of active pernisine, which significantly simplifies further downstream procedures and also omits the need for any pre-processing step for its activation. We demonstrate that S. rimosus can be used as an attractive host for industrial production of recombinant proteins that originate from thermophilic organisms.


Author(s):  
Moulay Abdelmonaim El Hidan ◽  
Kholoud Kahime ◽  
Mehdi Ait Laaradia ◽  
Btissam Bouimeja ◽  
Fadoua Aabadi ◽  
...  

Every year, more than 1 million cases of scorpion envenomation are reported worldwide. Scorpions are thermophilic organisms. They are sensitive to weather and climate conditions, in such a way the ongoing trends of increasing temperature and more variable weather could lead to scorpionism spreading. There has been considerable debate as to whether global envenomation will be impacted by climate change which has focused on snake and spider envenomation risk. This debate didn't give enough interest to scorpion stings and its burden risks, in spite their widespread potential effects in many regions. Here, the authors review how climate and climate change may impact scorpion activity as well as scorpion envenomation. They contrast ecological and behavioral characteristics of these arthropods, and how weather, climate, climate change, and socioeconomic factors may have very different impacts on the spatiotemporal occurrence and abundance of scorpions, and the resulting scorpion envenomation.


Sign in / Sign up

Export Citation Format

Share Document