scholarly journals Distinct Climate Effects on Dahurian Larch Growth at an Asian Temperate-Boreal Forest Ecotone and Nearby Boreal Sites

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Enzai Du ◽  
Yang Tang

Climate change is exerting profound impacts on the structure and function of global boreal forest. Compared with their northern counterparts, trees growing at the southern boreal forest and the temperate-boreal forest ecotone likely show distinct responses to climate change. Based on annual basal areal increment (BAI) of Dahurian larch (Larix gmelinii Rupr.) plantations with similar ages, tree densities and soil nutrient conditions, we investigated the tree growth responses to inter-annual climate variations at an Asian temperate-boreal forest ecotone and nearby boreal sites in northeast China. Annual BAI changed nonlinearly with cambial age in the form of a lognormal curve. The maximum annual BAI showed no significant difference between the two bioregions, while annual BAI peaked at an elder age at the boreal-temperate forest ecotone. After eliminating the age associated trend, conditional regression analyses indicate that residual BAI at the boreal sites increased significantly with higher growing-season mean nighttime minimum temperature and non-growing-season precipitation, but decreased significantly with higher growing-season mean daytime maximum temperature during the past three decades (1985–2015). In contrast, residual BAI at the boreal-temperate forest ecotone only showed a positive and weak response to inter-annual variations of growing-season precipitation. These findings suggest distinct effects of inter-annual climate variation on the growth of boreal trees at the temperate-boreal forest ecotone in comparison to the southern boreal regions, and highlight future efforts to elucidate the key factors that regulate the growth ofthe southernmost boreal trees.

2021 ◽  
Vol 13 (12) ◽  
pp. 2249
Author(s):  
Sadia Alam Shammi ◽  
Qingmin Meng

Climate change and its impact on agriculture are challenging issues regarding food production and food security. Many researchers have been trying to show the direct and indirect impacts of climate change on agriculture using different methods. In this study, we used linear regression models to assess the impact of climate on crop yield spatially and temporally by managing irrigated and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature), Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields, at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the 1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002 model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides, the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin, and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural districts, whereas about −2 to +17% impacts of precipitation were observed for different districts. The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their impacts on soybean yield at local and regional scales. The methods and the models proposed in this study could be helpful to quantify the climate change impacts on crop yields by considering irrigation conditions for different regions and periods.


2013 ◽  
Vol 31 (1) ◽  
pp. 27 ◽  
Author(s):  
Ravind Kumar ◽  
Mark Stephens ◽  
Tony Weir

This paper analyses trends in temperature in Fiji, using data from more stations (10) and longer periods (52-78 years) than previous studies. All the stations analysed show a statistically significant trend in both maximum and minimum temperature, with increases ranging from 0.08 to 0.23°C per decade. More recent temperatures show a higher rate of increase, particularly in maximum temperature (0.18 to 0.69°C per decade from 1989 to 2008). This clear signal of climate change is consistent with that found in previous studies of temperatures in Fiji and other Pacific Islands. Trends in extreme values show an even stronger signal of climate change than that for mean temperatures. Our preliminary analysis of daily maxima at 6 stations indicates that for 4 of them (Suva, Labasa, Vunisea and Rotuma) there has been a tripling in the number of days per year with temperature >32°C between 1970 and 2008. The correlations between annual mean maximum (minimum) temperature and year are mostly strong: for about half the stations the correlation coefficient exceeds 60% over 50+ years. Trends do not vary systematically with location of station. At all 7 stations for which both trends are available there is no statistically significant difference between the trends in maximum and minimum temperatures.


2005 ◽  
Vol 35 (11) ◽  
pp. 2709-2718 ◽  
Author(s):  
D Goldblum ◽  
L S Rigg

We consider the implications of climate change on the future of the three dominant forest species, sugar maple (Acer saccharum Marsh.), white spruce (Picea glauca (Moench) Voss), and balsam fir (Abies balsamea (L.) Mill.), at the deciduous–boreal forest ecotone, Ontario, Canada. Our analysis is based on individual species responses to past monthly temperature and precipitation conditions in light of modeled (general circulation model) monthly temperature and precipitation conditions in the study area for the 2080s. We then consider the tree species sensitivity to past climate with predicted conditions for the 2080 period. Sugar maple, located at its northern limit in the study area, shows the greatest potential for increased growth rates under the predicted warming and altered precipitation regime. White spruce is likely to benefit less, while the understory dominant balsam fir is likely to experience a decrease in growth potential. These projected changes would enhance the future status of sugar maple at its northern limit and facilitate range expansion northward in response to global warming.


2021 ◽  
Vol 22 (2) ◽  
pp. 191-197
Author(s):  
K. PHILIP ◽  
S.S. ASHA DEVI ◽  
G.K. JHA ◽  
B.M.K. RAJU ◽  
B. SEN ◽  
...  

The impact of climate change on agriculture is well studied yet there is scope for improvement as crop specific and location specific impacts need to be assessed realistically to frame adaptation and mitigation strategies to lessen the adverse effects of climate change. Many researchers have tried to estimate potential impact of climate change on wheat yields using indirect crop simulation modeling techniques. Here, this study estimated the potential impact of climate change on wheat yields using a crop specific panel data set from 1981 to 2010,for six major wheat producing states. The study revealed that 1°C increase in average maximum temperature during the growing season reduces wheat yield by 3 percent. Major share of wheat growth and yield (79%) is attributed to increase in usage of physical inputs specifically fertilizers, machine labour and human labour. The estimated impact was lesser than previously reported studies due to the inclusion of wide range of short-term adaptation strategies to climate change. The results reiterate the necessity of including confluent factors like physical inputs while investigating the impact of climate factors on crop yields.


2020 ◽  
Vol 63 ◽  
pp. 125744
Author(s):  
Jingwen Yang ◽  
David J. Cooper ◽  
Zongshan Li ◽  
Wenqi Song ◽  
Yuandong Zhang ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 3569 ◽  
Author(s):  
Yanji Wang ◽  
Xiangjin Shen ◽  
Ming Jiang ◽  
Xianguo Lu

Songnen Plain is a representative semi-arid marshland in China. The Songnen Plain marshes have undergone obvious loss during the past decades. In order to protect and restore wetland vegetation, it is urgent to investigate the vegetation change and its response to climate change in the Songnen Plain marshes. Based on the normalized difference vegetation index (NDVI) and climate data, we investigated the spatiotemporal change of vegetation and its relationship with temperature and precipitation in the Songnen Plain marshes. During 2000–2016, the growing season mean NDVI of the Songnen Plain marshes significantly (p < 0.01) increased at a rate of 0.06/decade. For the climate change effects on vegetation, the growing season precipitation had a significant positive effect on the growing season NDVI of marshes. In addition, this study first found asymmetric effects of daytime maximum temperature (Tmax) and nighttime minimum temperature (Tmin) on NDVI of the Songnen Plain marshes: The growing season NDVI correlated negatively with Tmax but positively with Tmin. Considering the global asymmetric warming of Tmax and Tmin, more attention should be paid to these asymmetric effects of Tmax and Tmin on the vegetation of marshes.


1999 ◽  
Vol 29 (9) ◽  
pp. 1333-1346 ◽  
Author(s):  
Annika Hofgaard ◽  
Jacques Tardif ◽  
Yves Bergeron

To decipher spatial and temporal tree-growth responses to climate change we used tree-ring data from Picea mariana (Mill.) BSP and Pinus banksiana Lamb. along a latitudinal transect in western Quebec. The transect encompassed the distinct transition between mixed and coniferous forests at approximately 49°N. Correlation analyses and principal component analyses were used to identify common spatiotemporal growth patterns, and site- and species-specific patterns since 1825. A moist summer in the year t - 1 and an early start of the current growing season favored growth of both species. A prolongation of the growing season into fall was the most distinguishing factor between the species. A long and gradual climatic gradient shifted to a short gradient with a clear segregation between the southern and northern parts of the transect. This shift, around 1875, was abrupt and characterized by a turbulent climatic period. The observed pattern was likely related to a large-scale shift in the mean position of the Arctic Front that occurred at the end of the 1800s. No discrete climatic setting explained the present switch from mixedwoods to conifers at 49°N. Awareness of such nonequilibrial relations between climate and species distribution is essential when assessing vegetation responses to future climate change.


2021 ◽  
Vol 2 ◽  
Author(s):  
Meng Liu ◽  
Sorin Popescu ◽  
Lonesome Malambo

Accurately monitoring forest fire activities is critical to understanding carbon dynamics and climate change. Three-dimensional (3D) canopy structure changes caused by fire make it possible to adopt Light Detection and Ranging (LiDAR) in burned forest classification. This study focuses on the effects of spatial resolution when using LiDAR data to differentiate burned and unburned forests. The National Aeronautics and Space Administration’s (NASA) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission provides LiDAR datasets such as the geolocated photon data (ATL03) and the land vegetation height product (ATL08), which were used in this study. The ATL03 data were filtered by two algorithms: the ATL08 algorithm (ILV) and the adaptive ground and canopy height retrieval algorithm (AGCH), producing classified canopy points and ground points. Six typical spatial resolutions: 10, 30, 60, 100, 200, and 250 m were employed to divide the classified photon points into separate segments along the track. Twenty-six canopy related metrics were derived from each segment. Sentinel-2 images were used to provide reference land cover maps. The Random Forest classification method was employed to classify burned and unburned segments in the temperate forest in California and the boreal forest in Alberta, respectively. Both weak beams and strong beams of ICESat-2 data were included in comparisons. Experiment results show that spatial resolution can significantly influence the canopy structures we detected. Classification accuracies increase along with coarser spatial resolutions and saturate at 100 m segment length, with overall accuracies being 79.43 and 92.13% in the temperate forest and the boreal forest, respectively. Classification accuracies based on strong beams are higher than those of using weak beams due to a larger point density in strong beams. The two filtering algorithms present comparable accuracies in burned forest classification. This study demonstrates that spatial resolution is a critical factor to consider when using spaceborne LiDAR for canopy structure characterization and classification, opening an avenue for improved measurement of forest structures and evaluation of terrestrial vegetation responses to climate change.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 852 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Soon-Kun Choi ◽  
Jaepil Cho ◽  
Inhong Song ◽  
...  

This research aims to assess the impact of climate change on water balance components in irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate the paddy water balance components considering future climate scenarios. The bias-corrected future projections of climate data from 29 GCMs (General Circulation Models) were applied to the APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%, and 45%, respectively. The hydrological simulations suggest over-proportional runoff–rainfall and under-proportional percolation and deep-percolation–rainfall relationships for the modeled climate scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated to decrease compared to the baseline period (1976–2005). The evaporation was likely to increase by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by 2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to increased CO2 concentration. The irrigation water demand is generally expected to increase over time in the future under both climate scenarios. Compared to the baseline, the most significant change is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by 0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The findings of this study can play a significant role as the basis for evaluating the vulnerability of rice production concerning water management against climate change.


Sign in / Sign up

Export Citation Format

Share Document