scholarly journals Microwave Sintering Rapid Synthesis of Nano/Micron β-SiC from Waste Lithium Battery Graphite and Photovoltaic Silicon to Achieve Carbon Reduction

2021 ◽  
Vol 13 (21) ◽  
pp. 11846
Author(s):  
Min Zhao ◽  
Qin Chen ◽  
Michael Johnson ◽  
Abhishek Kumar Awasthi ◽  
Qing Huang ◽  
...  

The paper describes one promising method and approach for the recycling, reuse, and co-resource treatment of waste photovoltaic silicon and lithium battery anode graphite. Specifically, this work considers the preparation of nano/micron silicon carbide (SiC) from waste resources. Using activated carbon as a microwave susceptor over a very short timeframe, this research paper shows that nano/micron β-SiC can be successfully synthesized using microwave sintering technology. The used sintering temperature is significantly faster and more energy-efficient than traditional processes. The research results show that the β-SiC particle growth morphology greatly affected by the microwave sintering time. In a short microwave sintering time, the morphology of the β-SiC product is in the form of nano/micron clusters. The clusters tended to be regenerated into β-SiC nanorods after appropriately extending the microwave sintering time. In the context of heat conversion and resource saving, the comprehensive CO2 emission reduction is significantly higher than that of the traditional SiC production method.

2020 ◽  
Vol 16 (9) ◽  
pp. 1674-1697
Author(s):  
O.P. Smirnova ◽  
A.O. Ponomareva

Subject. The article focuses on contemporary trends in the industrial and socio-economic development of Russia during the technological transformation of its sectors. Objectives. The study is an attempt to analyze what opportunities and difficulties may arise for the development of the industrial sectors in Russia. We also examine the dynamics of key development indicators of the industrial sectors, point out inhibitors of their competitiveness. Methods. The methodological framework comprises general methods of systems, structural-functional and comprehensive approaches to analyzing economic phenomena. We applied graphic, economic-statistical methods of research, conventional methods of grouping, comparison and generalization, and the logic, systems and statistical analysis. Results. We display how industrial sectors develop over time by type of economic activities. The article provides the rationale for structural rearrangements and further innovation-driven development of the industries. We display that the Russian industries technologically depend om imported production technologies. We substantiate the renewal of assets and technologies at industrial enterprises, and retain and develop human capital. Conclusions and Relevance. Primarily, the Russian economy should be digitalized as a source of the long-term economic growth. Notably, industrial enterprises should replace their linear production method with that of the circular economy and implement resource-saving innovative technologies. The State evidently acts as the leading driver of technological retrofitting of the industrial sector. If the State holds the reasonable and appropriate industrial policy at the federal and regional levels and configure its tools to ensure the modern approach to developing the industries in a competitive fashion, the industrial complex will successfully transform into the innovative economy.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


2015 ◽  
Vol 754-755 ◽  
pp. 240-244
Author(s):  
M.N. Derman ◽  
Syaza Nabilla Mohd Suhaimi ◽  
Zuraidawani Che Daud

Microwave sintering is new sintering technology method to produce Al alloys. The advantages of this method because of very short sintering time and less production cost compare to conventional sintering. However, the main problems in microwave sintering are required to be controlled sintering time due to rapid sintering mechanism. Therefore the effect of microwave sintering time to PM Aluminium will be studied. The compacted and sintered aluminium powder is placed in a microwave oven at a different period of 5 minutes, 10 minutes, 15 minutes and 20 minutes. Compression of 150 MPa is applied on aluminium powder to form pellets. Palette is shaped to 1cm in diameter and weighs 1g. SiC is placed together with aluminium samples in the microwave for the purpose of absorbing electromagnetic energy and is converted to heat. Results of different period sintering of aluminium pallet production altered physical properties of each sample. For a rapid sintering time, aluminium pallet does not show any binding reaction between powder particles. Whereas, for long microwave sintering period, solid particles phase change into solid-liquid phase caused by the movement and the formation of bonds between particles. Hence, this will be affecting the mechanical properties of the sample material.


2011 ◽  
Vol 418-420 ◽  
pp. 55-58 ◽  
Author(s):  
Yun Long Ai ◽  
Fei He ◽  
Bing Liang Liang ◽  
Wen He ◽  
Li Liu

The influences of Nb2O5on the phase, microstructure and hydrochloric acid corrosion behaviors of Nb2O5-Al2O3ceramics sintered with 2.45 GHz microwave energy were investigated. The results showed that Nb2O5 reacted completely with Al2O3to form AlNbO4and densified the pure Al2O3at a lower sintering temperature and in a short sintering time. Nb2O5-Al2O3ceramic samples were corroded in diverse concentration hydrochloric acid for different time. Weight loss rate of Nb2O5-Al2O3ceramic rose dramatically when the corrosion time was not longer than 4 h, and it increased slowly beyond 24 h. After Nb2O5-Al2O3ceramic samples were corroded for 1 h, pitting corrosion was observed by scanning electric microscope, which was consistent with the analysis results of the scanning Kelvin Probe.


2013 ◽  
Vol 594-595 ◽  
pp. 832-836
Author(s):  
M. Marina ◽  
M.Z.M. Zamzuri ◽  
Mohd Nazree Derman ◽  
Mohd Asri Selamat ◽  
Z. Nooraizedfiza

This research is focused on studying the density and mechanical properties of iron-chromium composites consolidated by innovative rapid microwave sintering technology against conventionally sintered counterparts using slow heating crucible furnace. Another aim of this study is to assess the viability of yttria (Y2O3) ceramic particulates as reinforcement to the iron-chromium composites. Fabrication of iron-chromium-yttria composites consolidated in microwave furnace and conventional crucible furnace was successfully accomplished. Improvement of density is evident in microwave sintered composites. The Y2O3 addition significantly increases the hardness of the composite (118 Hv for microwave specimens as opposed to 110Hv for conventional specimens). The study also successfully established the viability of microwave sintering technique for consolidating iron based powder metallurgy composites by up to 80% reduction of sintering time.


1992 ◽  
Vol 269 ◽  
Author(s):  
Jinsong Zhang ◽  
Lihua Cao ◽  
Fei Xia

ABSTRACTThe Si3N4 ceramics(91wt%Si3N4+5wt%Y2O3+4wt%Al2O3) of room temperature strength 620--760 MPa and fracture toughness 7 MPa-m½ were prepared by microwave sintering and their microstructure and mechanical properties were studied.The experiment results show that the higher N2 pressure (>4atm) is very necessary for microwave sintering of Si3N4 ceramics; microwave sintering can greatly decrease the sintering temperature to 1500* C, and increase the transformation rate of α to β-Si3N4,and reduce the total sintering time to about 1 hour. The mechanical properties of the Si3N4 ceramics sintered by microwave are better than that by conventional pressureless sintering.


2011 ◽  
Vol 216 ◽  
pp. 579-582 ◽  
Author(s):  
Si Wen Tang ◽  
Hou An Zhang ◽  
Jian Hui Yan

TiCN matrix cermets were prepared by using traditional sintering and microwave sintering. The effect of sintering methods, sintering temperature and protective atmosphere to the densification process of as prepared material were discussed. The results show that microwave sintering can short the sintering time than the traditional sintering, but it need higher temperature to obtain approximate density. At 1500°C,holding 5min, vacuum microwave sintering can gain relative density of 99.5%. The relative density of TiCN matrix cermets under argon shield is lower than vacuum microwave sintering, and the microscopic particles is more small, but the uniformity of pore is reduced. Microwave sintering can greatly reduce energy consumption.


2012 ◽  
Vol 519 ◽  
pp. 265-268 ◽  
Author(s):  
Yun Long Ai ◽  
Fei He ◽  
Bing Liang Liang ◽  
Wen He ◽  
Wei Hua Chen

The influence of La2O3 on the phase and microstructure evaluation and mechanical properties of La2O3-Al2O3 ceramics sintered with 2.45 GHz microwave energy was investigated. The results showed that La2O3 could densify the pure alumina with a lower sintering temperature and a short sintering time. La2O3 reacted with Al2O3 to form LaAl11O18 completely and the amount of LaAl11O18 increased with the increasing content of La2O3, distributing at the Al2O3 grain boundaries. The specimen doped with 10 vol.% and 15 vol.% La2O3 sintered at 1500 °C exhibited plenty of columnar grains with draw ratio about 1:4. The existence of columnar grains enhanced the microhardness and fracture toughness of La2O3-Al2O3 ceramics.


2010 ◽  
Vol 148-149 ◽  
pp. 1588-1593
Author(s):  
Yun Long Ai ◽  
Yan Yan Li ◽  
Chang Hong Liu ◽  
Wen He ◽  
Jia Yuan Ding

The green bodies of LaNbO4/MoSi2 composite materials were compacted by warm pressing and cold pressing processes, and then the composites were prepared by microwave sintering. Effects of the two different compaction processes on sintering process and sintered samples were analyzed. The results show that the density of the microwave sintered sample by cold pressing (5.599g/cm3) is similar to that of warm pressing (5.593 g/cm3). But cold pressing has some disadvantages, such as longer sintering time, incomplete sintered samples, peeling easily on the surface and delaminating, existing internal stress, having microcrack and impurities, and occurring distortion easily in sintered samples. The samples compacted by warm pressing have higher heating rate in the microwave sintering process, which have more homogeneous structures, no clear microcrack and big cavities, and higher fracture toughness after sintering. Compared with cold pressing, the comprehensive properties of warm pressing are better.


2015 ◽  
Vol 15 (6) ◽  
pp. 3429-3443 ◽  
Author(s):  
K. Neitola ◽  
D. Brus ◽  
U. Makkonen ◽  
M. Sipilä ◽  
R. L. Mauldin III ◽  
...  

Abstract. Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1–2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4–H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would cause the discrepancy. Possible reasons for the discrepancy are discussed and some suggestions include that the missing sulfuric acid is in clusters, formed with contaminants found in most laboratory experiments. One-to-two-order-of-magnitude higher sulfuric-acid concentrations (measured as total sulfate in this study) would contribute to a higher fraction of particle growth rate than assumed from the measurements by mass spectrometers (i.e. sulfuric-acid monomer). However, the observed growth rates by sulfate-containing vapor in this study does not directly imply a similar situation in the field, where sources of sulfate are much more diverse.


Sign in / Sign up

Export Citation Format

Share Document