marker virus
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Maren Eggers ◽  
Ingeborg Schwebke ◽  
Miranda Suchomel ◽  
Valerie Fotheringham ◽  
Jürgen Gebel ◽  
...  

When facing an emerging virus outbreak such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a quick reaction time is key to control the spread. It takes time to develop antivirals and vaccines, and implement vaccination campaigns. Therefore, preventive measures such as rapid isolation of cases and identification and early quarantine of cases’ close contacts—as well as masks, physical distancing, hand hygiene, surface disinfection and air control—are crucial to reduce the risk of transmission. In this context, disinfectants and antiseptics with proven efficacy against the outbreak virus should be used. However, biocidal formulations are quite complex and may include auxiliary substances such as surfactants or emollients in addition to active substances. In order to evaluate disinfectants’ efficacy objectively, meaningful efficacy data are needed. Therefore, the European Committee for Standardisation technical committee 216 ‘Chemical disinfectants and antiseptics’ Working Group 1 (medical area) has developed standards for efficacy testing. The European tiered approach grades the virucidal efficacy in three levels, with corresponding marker test viruses. In the case of SARS-CoV-2, disinfectants with proven activity against vaccinia virus, the marker virus for the European claim ‘active against enveloped viruses’, should be used to ensure effective hygiene procedures to control the pandemic.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 621 ◽  
Author(s):  
Graillot ◽  
Blachere-López ◽  
Besse ◽  
Siegwart ◽  
López-Ferber

To test the importance of the host genotype in maintaining virus genetic diversity, five experimental populations were constructed by mixing two Cydia pomonella granulovirus isolates, the Mexican isolate CpGV-M and the CpGV-R5, in ratios of 99% M + 1% R, 95% M + 5% R, 90% M + 10% R, 50% M + 50% R, and 10% M + 90% R. CpGV-M and CpGV-R5 differ in their ability to replicate in codling moth larvae carrying the type I resistance. This ability is associated with a genetic marker located in the virus pe38 gene. Six successive cycles of replication were carried out with each virus population on a fully-permissive codling moth colony (CpNPP), as well as on a host colony (RGV) that carries the type I resistance, and thus blocks CpGV-M replication. The infectivity of offspring viruses was tested on both hosts. Replication on the CpNPP leads to virus lineages preserving the pe38 markers characteristic of both isolates, while replication on the RGV colony drastically reduces the frequency of the CpGV-M pe38 marker. Virus progeny obtained after replication on CpNPP show consistently higher pathogenicity than that of progeny viruses obtained by replication on RGV, independently of the host used for testing.


2018 ◽  
Vol 243 ◽  
pp. 36-43 ◽  
Author(s):  
Mukesh Bhatt ◽  
Jajati K. Mohapatra ◽  
Laxmi K. Pandey ◽  
Nihar N. Mohanty ◽  
Biswajit Das ◽  
...  

2008 ◽  
Vol 89 (12) ◽  
pp. 3086-3096 ◽  
Author(s):  
Ying Fang ◽  
Jane Christopher-Hennings ◽  
Elizabeth Brown ◽  
Haixia Liu ◽  
Zhenhai Chen ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major problem in the pork industry worldwide. The limitations of current PRRSV vaccines require the development of a new generation of vaccines. One of the key steps in future vaccine development is to include markers for diagnostic differentiation of vaccinated animals from those naturally infected with wild-type virus. Using a cDNA infectious clone of type 1 PRRSV, this study constructed a recombinant green fluorescent protein (GFP)-tagged PRRSV containing a deletion of an immunogenic epitope, ES4, in the nsp2 region. In a nursery pig disease model, the recombinant virus was attenuated with a lower level of viraemia in comparison with that of the parental virus. To complement the marker identification, GFP and ES4 epitope-based ELISAs were developed. Pigs immunized with the recombinant virus lacked antibodies directed against the corresponding deleted epitope, but generated a high-level antibody response to GFP by 14 days post-infection. These results demonstrated that this recombinant marker virus, in conjunction with the diagnostic tests, enables serological differentiation between marker virus-infected animals and those infected with the wild-type virus. This rationally designed marker virus will provide a basis for further development of PRRSV marker vaccines to assist with the control of PRRS.


2007 ◽  
Vol 88 (4) ◽  
pp. 1225-1230 ◽  
Author(s):  
Nele Tamberg ◽  
Valeria Lulla ◽  
Rennos Fragkoudis ◽  
Aleksei Lulla ◽  
John K. Fazakerley ◽  
...  

Alphavirus-based vector and replicon systems have been extensively used experimentally and are likely to be used in human and animal medicine. Whilst marker genes can be inserted easily under the control of a duplicated subgenomic promoter, these constructs are often genetically unstable. Here, a novel alphavirus construct is described in which an enhanced green fluorescent protein (EGFP) marker gene is inserted into the virus replicase open reading frame between nsP3 and nsP4, flanked by nsP2 protease-recognition sites. This construct has correct processing of the replicase polyprotein, produces viable virus and expresses detectable EGFP fluorescence upon infection of cultured cells and cells of the mouse brain. In comparison to parental virus, the marker virus has an approximately 1 h delay in virus RNA and infectious virus production. Passage of the marker virus in vitro and in vivo demonstrates good genetic stability. Insertion of different markers into this novel construct has potential for various applications.


1998 ◽  
Vol 72 (6) ◽  
pp. 5318-5322 ◽  
Author(s):  
Christian Moser ◽  
Jon-Duri Tratschin ◽  
Martin A. Hofmann

ABSTRACT The gene coding for bacterial chloramphenicol acetyltransferase (CAT) was inserted in frame into the viral Npro gene of the full-length cDNA clone pA187-1 of the classical swine fever virus (CSFV) strain Alfort/187. RNA transcribed in vitro from the resulting plasmid was transfected into SK-6 porcine kidney cells. Infectious progeny virus vA187-CAT recovered from transfected cells had growth characteristics indistinguishable from those of parental virus vA187-1. In cells infected with vA187-CAT the predicted fusion protein, CAT-Npro, was detected, and it retained the enzymatic activities of both CAT and Npro. The CAT gene remained stably inserted in the viral genome after 10 virus passages. Thus, marker virus vA187-CAT represents a useful tool for quantitative analysis of viral replication and gene expression.


Sign in / Sign up

Export Citation Format

Share Document