scholarly journals Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.)

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Qiong He ◽  
Yanjing Ren ◽  
Wenbin Zhao ◽  
Ru Li ◽  
Lugang Zhang

To elucidate the effect of low temperature on anthocyanin biosynthesis in purple head Chinese cabbage, we analyzed anthocyanin accumulation and related gene expression in the seedlings of purple head Chinese cabbage, white head parent Chinese cabbage, and its purple male parent under a normal 25 °C temperature and a low 12 °C temperature. Anthocyanin accumulation in purple lines was strongly induced by low temperature, and the total anthocyanin content of seedlings was significantly enhanced. In addition, nearly all phenylpropanoid metabolic pathway genes (PMPGs) were down-regulated, some early biosynthesis genes (EBGs) were up-regulated, and nearly all late biosynthesis genes (LBGs) directly involved in anthocyanin biosynthesis showed higher expression levels in purple lines after low-temperature induction. Interestingly, a R2R3-MYB transcription factor (TF) gene ‘BrMYB2’ and a basic-helix-loop-helix (bHLH) regulatory gene ‘BrTT8’ were highly up-regulated in purple lines after low temperature induction, and two negative regulatory genes ‘BrMYBL2.1’ and ‘BrLBD38.2’ were up-regulated in the white line. BrMYB2 and BrTT8 may play important roles in co-activating the anthocyanin structural genes in purple head Chinese cabbage after low-temperature induction, whereas down-regulation of BrMYB2 and up-regulation of some negative regulators might be responsible for white head phenotype formation. Data presented here provide new understanding into the anthocyanin biosynthesis mechanism during low temperature exposure in Brassica crops.

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qiong He ◽  
Qianqian Lu ◽  
Yuting He ◽  
Yaxiu Wang ◽  
Ninan Zhang ◽  
...  

Chinese cabbage is an important vegetable mainly planted in Asian countries, and mining the molecular mechanism responsible for purple coloration in Brassica crops is fast becoming a research hotspot. In particular, the anthocyanin accumulation characteristic of purple heading Chinese cabbage, along with the plant’s growth and head developing, is still largely unknown. To elucidate the dynamic anthocyanin biosynthesis mechanism of Chinese cabbage during its development processes, here we investigated the expression profiles of 86 anthocyanin biosynthesis genes and corresponding anthocyanin accumulation characteristics of plants as they grew and their heads developed, between purple heading Chinese cabbage 11S91 and its breeding parents. Anthocyanin accumulation of 11S91 increased from the early head formation period onward, whereas the purple trait donor 95T2-5 constantly accumulated anthocyanin throughout its whole plant development. Increasing expression levels of BrMYB2 and BrTT8 together with the downregulation of BrMYBL2.1, BrMYBL2.2, and BrLBD39.1 occurred in both 11S91 and 95T2-5 plants during their growth, accompanied by the significantly continuous upregulation of a phenylpropanoid metabolic gene, BrPAL3.1; a series of early biosynthesis genes, such as BrCHSs, BrCHIs, BrF3Hs, and BrF3’H; as well as some key late biosynthesis genes, such as BrDFR1, BrANS1, BrUF3GT2, BrUF5GT, Br5MAT, and Brp-Cout; in addition to the transport genes BrGST1 and BrGST2. Dynamic expression profiles of these upregulated genes correlated well with the total anthocyanin contents during the processes of plant growth and leaf head development, and results supported by similar evidence for structural genes were also found in the BrMYB2 transgenic Arabidopsis. After intersubspecific hybridization breeding, the purple interior heading leaves of 11S91 inherited the partial purple phenotypes from 95T2-5 while the phenotypes of seedlings and heads were mainly acquired from white 94S17; comparatively in expression patterns of investigated anthocyanin biosynthesis genes, cotyledons of 11S91 might inherit the majority of genetic information from the white type parent, whereas the growth seedlings and developing heading tissues of 11S91 featured expression patterns of these genes more similar to 95T2-5. This comprehensive set of results provides new evidence for a better understanding of the anthocyanin biosynthesis mechanism and future breeding of new purple Brassica vegetables.


2001 ◽  
Vol 158 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Hajime Hasegawa ◽  
Tomoko Fukasawa-Akada ◽  
Toshikatsu Okuno ◽  
Minoru Niizeki ◽  
Masahiko Suzuki

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 898
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Xianjie Gu ◽  
Diya Lei ◽  
Bing Zhao ◽  
...  

Red-skinned pear is a promising commercial fruit due to its attractive appearance and nutritious value. Anthocyanin is the determinant of the red coloration of the pear peel. However, differences in anthocyanin accumulation exist among red pear cultivars with different genetic backgrounds. In this study, we analyzed the anthocyanin content and gene expression patterns in the fruits and different tissues of the red pear ‘Red Zaosu’ at different developmental stages and found a difference in anthocyanin accumulation between ‘Red Zaosu’ pear and its green mutant. The data showed that the expression profiles of transcripts that encoded critical anthocyanin biosynthetic genes were basically consistent with a tendency to a decreased anthocyanin content during fruit development, indicating that a synergistic effect of these genes was responsible for anthocyanin biosynthesis and regulation. Tissue-specific expression analysis of anthocyanin biosynthetic genes showed that they could be expressed in all tissues but at different levels. PbF3H, PbDFR, and PbANS were mainly expressed during the early flowering period, which explained the reduced levels of anthocyanin content in petals. Additionally, the content of anthocyanins and the expression levels of PbDFR, PbANS, and PbMYB10 significantly decreased in the green mutant of ‘Red Zaosu’, suggesting that PbDFR, PbANS, and PbMYB10 probably play a decisive role in determining the skin coloration of ‘Red Zaosu’ and its green mutant.


Author(s):  
Yingtao Ma ◽  
Mengmeng Zhao ◽  
Hongxia Wu ◽  
Congying Yuan ◽  
Huiyun Li ◽  
...  

Fruit bagging is a popular agricultural practice that has been widely used to physically protect fruit. However, the application of fruit bags usually has various effects on fruit quality. In this study, three kinds of paper bags with different colors and transmittance were applied to investigate their effects on the skin coloration and related gene expression of peach (Prunus persica). Our findings showed that bagging treatment inhibited anthocyanin accumulation and the expression of related structural and regulatory genes in the peach pericarp. To a certain extent, the inhibitory effects were negatively correlated with the light transmittance of these paper bags. The expression of MYB10.1 was also suppressed by fruit bagging and was highly consistent with anthocyanin content in peach pericarps, which indicated that MYB10.1 might have a critical role in the light-mediated regulation of anthocyanin production in peach pericarps. These findings further enrich our theoretical knowledge of the regulation of anthocyanin synthesis in peach fruit and provide a theoretical basis for common horticultural practices.


2018 ◽  
Vol 40 (11) ◽  
Author(s):  
Yunting Zhang ◽  
Yi Liu ◽  
Wenjie Hu ◽  
Bo Sun ◽  
Qing Chen ◽  
...  

2018 ◽  
Author(s):  
Xi Ou Xiao ◽  
Wen qiu Lin ◽  
Ke Li ◽  
Xue Feng Feng ◽  
Hui Jin ◽  
...  

We obtained a white-peel eggplant (L6-5) by EMS mutation in our previous study, whose total anthocyanin content was significantly decreased as compared with that of wild-type (WT). To analyse the anthocyanin biosynthesis mechanism in eggplants, we analysed the eggplant peel by RNA-seq in this study. The transcript results revealed upregulation of 465 genes and downregulation of 525 genes in L6-5 as compared with the WT eggplant. A total of 11 anthocyanin biosynthesis structure genes were significantly downregulated in L6-5 as compared with that in WT. Meanwhile, on the basis of the RT-PCR results of four natural eggplant cultivars, the expression pattern of 11 anthocyanin biosynthesis structure genes was consistent with the anthocyanin content. Thus, we speculated the anthocyanin biosynthesis pathway in eggplant peel. The transcript and RT-PCR results suggested positive regulation of MYB1, MYB108 and TTG8 and negative regulation of bHLH36 in anthocyanin biosynthesis. This study enhanced our cumulative knowledge about anthocyanin biosynthesis in eggplant peels.


2015 ◽  
Vol 59 (2) ◽  
pp. 325-330 ◽  
Author(s):  
J. M. Yin ◽  
R. X. Yan ◽  
P. T. Zhang ◽  
X. Y. Han ◽  
L. Wang

Sign in / Sign up

Export Citation Format

Share Document