Fuel Particle Heat Transfer Part 1: Convective Cooling of Irradiated Fuel Particles

Author(s):  
Jack D. Cohen ◽  
Mark A. Finney
2006 ◽  
Vol 932 ◽  
Author(s):  
Cyrille Alliot ◽  
Bernd Grambow

ABSTRACTThe dissolution of irradiated HTR UO2-ThO2 fuel particle under reducing conditions was studied using a continuous flow-through reactor and compared to the dissolution of unirradiated fuel particle in the same condition. The irradiated fuel particle was leached for more than eight months. A fast 137Cs release was observed, corresponding to a labile fraction (“instant release fraction”). Then, a congruent leaching of 137Cs and 90Sr was measured corresponding to a matrix dissolution rate equal to 1.7 mg/m2/d. A slower release of 238Pu probably due to sorption phenomena is observed. Dissolution rates are 100-2000 times higher than for unirradiated material. We can conclude that alpha-radiolysis is responsible for this increase due to local oxic conditions. However we cannot exclude that due to irradiation the accessible surface area has been increased as well.The coating of this irradiated particle was equally studied to determine the presence of different radionuclides and their leaching properties of leaching


1998 ◽  
Vol 120 (4) ◽  
pp. 840-857 ◽  
Author(s):  
M. P. Dyko ◽  
K. Vafai

A heightened awareness of the importance of natural convective cooling as a driving factor in design and thermal management of aircraft braking systems has emerged in recent years. As a result, increased attention is being devoted to understanding the buoyancy-driven flow and heat transfer occurring within the complex air passageways formed by the wheel and brake components, including the interaction of the internal and external flow fields. Through application of contemporary computational methods in conjunction with thorough experimentation, robust numerical simulations of these three-dimensional processes have been developed and validated. This has provided insight into the fundamental physical mechanisms underlying the flow and yielded the tools necessary for efficient optimization of the cooling process to improve overall thermal performance. In the present work, a brief overview of aircraft brake thermal considerations and formulation of the convection cooling problem are provided. This is followed by a review of studies of natural convection within closed and open-ended annuli and the closely related investigation of inboard and outboard subdomains of the braking system. Relevant studies of natural convection in open rectangular cavities are also discussed. Both experimental and numerical results obtained to date are addressed, with emphasis given to the characteristics of the flow field and the effects of changes in geometric parameters on flow and heat transfer. Findings of a concurrent numerical and experimental investigation of natural convection within the wheel and brake assembly are presented. These results provide, for the first time, a description of the three-dimensional aircraft braking system cooling flow field.


Author(s):  
Long-gang Liu ◽  
Chun-wei Gu ◽  
Xiao-dong Ren

Convective cooling channels are applied in a two-dimensional compressor vane to use the intercooling method to improve the efficiency of Brayton cycle and reduce the temperature of the vane. In this paper, we analyze the effect of coolant to the aerodynamic performance and heat transfer performance of the main stream and the vane. For the case of a two-dimensional compressor vane NACA65-(12A2I8b)10, the vane which has five convective cooling channels has been numerically simulated in different test conditions by discontinuous Galerkin (DG) method. The coolant is supercritical carbon dioxide whose pressure is 10MPa. Conjugate heat transfer method has been used in this paper. The numerical simulation result is similar to the experiment data and has been compared with the result of the vane without cooling channels to prove the effect of cooling channels. Cooling channels have large effect on the distribution of temperature and heat transfer coefficient. In addition, the relationship between Nu and Re on the fluid-solid interface has been analyzed and a suitable empirical equation has been obtained. This work analyzes the effect of intercooling system in the compressor and give several advice on future engineering applications in aero engines and gas turbines.


2021 ◽  
Author(s):  
Guilin Liu ◽  
Jing Liu

Abstract The increasingly high power density of today's electronic devices requires the cooling techniques to produce highly effective heat dissipation performance with as little sacrifice as possible to the system compactness. Among the currently available thermal management schemes, the convective liquid metal cooling provides considerably high performance due to their unique thermal properties. This paper firstly reviews the studies on convective cooling using low-melting-point metals published in the past few decades. A group of equations for the thermophysical properties of In-Ga-Sn eutectic alloy is then documented by rigorous literature examination, following by a section of correlations for the heat transfer and flow resistance calculation to partially facilitate the designing work at the current stage. The urgent need to investigate the heat transfer and flow resistance of forced convection of low-melting-point metals in small/mini-channels, typical in compact electronic devices, is carefully argued. Some special aspects pertaining to the practical application of this cooling technique, including the entrance effect, mixed convection, and compact liquid metal heat exchanger design, are also discussed. Finally, future challenges and prospects are outlined.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
O. D. Makinde ◽  
S. Khamis ◽  
M. S. Tshehla ◽  
O. Franks

Heat transfer characteristics of a Berman flow of water based nanofluids containing copper (Cu) and alumina (Al2O3) as nanoparticles in a porous channel with Navier slip, viscous dissipation, and convective cooling are investigated. It is assumed that the exchange of heat with the ambient surrounding takes place at the channel walls following Newton’s law of cooling. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using appropriate similarity transformations. These equations are solved analytically by regular perturbation methods with series improvement technique and numerically using an efficient Runge-Kutta Fehlberg integration technique coupled with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop, and Nusselt numbers are presented graphically and discussed quantitatively.


2010 ◽  
Vol 14 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Afshin Mohsenzadeh ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

Numerical simulations of forced convective incompressible flow in a horizontal plane channel with adiabatic walls over two isothermal tandem triangular cylinders of equal size are presented to investigate the effect of wall proximity of obstacles, gap space (i.e. gap between two squares), and Reynolds number. Computations have been carried out for Reynolds numbers of (based on triangle width) 100, 250, and 350. Results show that, wall proximity has different effect on first and second triangle in fluid characteristics especially in lower gap spaced, while for heat transfer a fairly same behavior was seen.


2013 ◽  
Vol 34 (4) ◽  
pp. 187-197 ◽  
Author(s):  
Andrzej Kacprzak ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m−2) was obtained for temperature 773 K and air flow rate 8.3×106 m3s−1. Itwas shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.


Author(s):  
Amy Mensch ◽  
Karen A. Thole

Ever-increasing thermal loads on gas turbine components require improved cooling schemes to extend component life. Engine designers often rely on multiple thermal protection techniques, including internal cooling and external film cooling. A conjugate heat transfer model for the endwall of a seven-blade cascade was developed to examine the impact of both convective cooling and solid conduction through the endwall. Appropriate parameters were scaled to ensure engine-relevant temperatures were reported. External film cooling and internal jet impingement cooling were tested separately and together for their combined effects. Experiments with only film cooling showed high effectiveness around film-cooling holes due to convective cooling within the holes. Internal impingement cooling provided more uniform effectiveness than film cooling, and impingement effectiveness improved markedly with increasing blowing ratio. Combining internal impingement and external film cooling produced overall effectiveness values as high as 0.4. A simplified, one-dimensional heat transfer analysis was used to develop a prediction of the combined overall effectiveness using results from impingement only and film cooling only cases. The analysis resulted in relatively good predictions, which served to reinforce the consistency of the experimental data.


2016 ◽  
Vol 697 ◽  
pp. 852-857
Author(s):  
Rong Li ◽  
Bing Liu ◽  
Chun He Tang

TRISO coated fuel particle is the most important component in HTR fuel, the silicon carbide (SiC) coating layer is regarded as the pressure vessel to contain the fission products. During reactor operation, the inner pressure resulting from fission products and pyrocarbon (PyC) thermal effect will contribute to the failure of TRISO-coated particles. The higher temperature will result in the increasing of inner pressure and PyC thermal expansion, which will then change the stress of SiC layer. Considering the effects of temperature on inner-pressure expansion and elastic strain into the pressure vessel failure model, thermal effects on the stress of TRISO-coated particles were studied with analytical solution. The results indicated that the effects of inner pressure on the particle stresses were increasingly highlighted at the late stage of irradiation. And the increasing temperature caused a slight effect on PyC elastic modulus while elastic strain is unaffected greatly, either. Therefore, CFP stresses remain unchanged basically.


Sign in / Sign up

Export Citation Format

Share Document