scholarly journals A Segmentation Model of ECU Excitation Signal Based on Characteristic Parameters

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4165
Author(s):  
Xingjian Zheng ◽  
Bo Wang ◽  
Yongqi Ge

According to the basic structure and working principle of the excitation signal sensors of a diesel engine electronic control unit (ECU), a segmentation model of an ECU excitation signal based on characteristic parameters (ESCP-SM) is proposed. In the ESCP-SM, the ECU excitation signal is divided into several parts, and each part has its characteristic parameters model. By using the same global parameters and strictly controlling each part’s proportional parameters, the ESCP-SM can achieve signal alignment and dynamic frequency modulation. Based on the simulation experiment, spectrum analysis proves that this modeling method ensures that the original signal’s effective information is not lost. Pearson similarity analysis shows that the similarity between the simulation signal and practical signal reaches 74%, exhibiting strong correlation. In addition, we set up a physical testing environment. ESCP-SM is realized based on virtual instrument technology, and provides excitation signals for a Komatsu 8 ECU. By modifying the parameter configuration, the ECU can drive the injector to work correctly.

2013 ◽  
Vol 475-476 ◽  
pp. 1414-1418
Author(s):  
Zhuo Qing Li ◽  
Lan Tang ◽  
Rui Liu

This paper discovers the linear single trace model with 2-DOF for three-axel steering vehicle. The mechanical and hydraulic function model are set up in AMESim while the mathematic and electronic control unit model were established in Matlab/Simulink. In order to take the advantage of each software and make its use to the fullest, interface blocks of AMESim were introduced to link models of these two different platforms. Results from this co-simulation can be applied to judge whether the system has reached the requirement of steering experience or not.


Author(s):  
C Kannan ◽  
R Vignesh ◽  
C Karthick ◽  
B Ashok

Lithium-ion batteries are facing difficulties in an aspect of protection towards battery thermal safety issues which leads to performance degradation or thermal runaway. To negate these issues an effective battery thermal management system is absolute pre-requisite to safeguard the lithium-ion batteries. In this context to support the future endeavours and to improvise battery thermal management system (BTMS) design and its operation the article reveals on three aspects through the analysis of scientific literatures. First, this paper collates the present research progress and status of various battery management strategies employed to lithium-ion batteries. Further, to promote stable and efficient BTMS operation as an initiation the extensive attention is paid towards roles of BTMS electronic control unit and also presented the essential functionality need to consider for designing best BTMS control strategy. Finally, elucidates the various unconventional assessment tools can be employed to recognize the suitable thermal management technique and also for establish optimum BTMS operation based on requirements. From the experience of this article additionally delivers some of the research gaps identified and the essential areas need to focus for the development of superior lithium-ion BTMS technology. All the contents reveal in this article will hopefully assist to the design commercially suitable effective BTMS technology especially for electro-mobility application.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3215
Author(s):  
David Fernández-Rodríguez ◽  
Magín Lapuerta ◽  
Lizzie German

Nowadays, the transport sector is trying to face climate change and to contribute to a sustainable world by introducing modern after-treatment systems or by using biofuels. In sectors such as road freight transportation, agricultural or cogeneration in which the electrification is not considered feasible with the current infrastructure, renewable options for diesel engines such as alcohols produced from waste or lignocellulosic materials with advanced production techniques show a significant potential to reduce the life-cycle greenhouse emissions with respect to diesel fuel. This study concludes that lignocellulosic biobutanol can achieve 60% lower greenhouse gas emissions than diesel fuel. Butanol-diesel blends, with up to 40% butanol content, could be successfully used in a diesel engine calibrated for 100% diesel fuel without any additional engine modification nor electronic control unit recalibration at a warm ambient temperature. When n-butanol is introduced, particulate matter emissions are sharply reduced for butanol contents up to 16% (by volume), whereas NOX emissions are not negatively affected. Butanol-diesel blends could be introduced without startability problems up to 13% (by volume) butanol content at a cold ambient temperature. Therefore, biobutanol can be considered as an interesting option to be blended with diesel fuel, contributing to the decarbonization of these sectors.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Nicholas Ayres ◽  
Lipika Deka ◽  
Daniel Paluszczyszyn

The vehicle-embedded system also known as the electronic control unit (ECU) has transformed the humble motorcar, making it more efficient, environmentally friendly, and safer, but has led to a system which is highly dependent on software. As new technologies and features are included with each new vehicle model, the increased reliance on software will no doubt continue. It is an undeniable fact that all software contains bugs, errors, and potential vulnerabilities, which when discovered must be addressed in a timely manner, primarily through patching and updates, to preserve vehicle and occupant safety and integrity. However, current automotive software updating practices are ad hoc at best and often follow the same inefficient fix mechanisms associated with a physical component failure of return or recall. Increasing vehicle connectivity heralds the potential for over the air (OtA) software updates, but rigid ECU hardware design does not often facilitate or enable OtA updating. To address the associated issues regarding automotive ECU-based software updates, a new approach in how automotive software is deployed to the ECU is required. This paper presents how lightweight virtualisation technologies known as containers can promote efficient automotive ECU software updates. ECU functional software can be deployed to a container built from an associated image. Container images promote efficiency in download size and times through layer sharing, similar to ECU difference or delta flashing. Through containers, connectivity and OtA future software updates can be completed without inconveniences to the consumer or incurring expense to the manufacturer.


2010 ◽  
Vol 40-41 ◽  
pp. 156-161 ◽  
Author(s):  
Yang Li ◽  
Yan Qiang Li ◽  
Zhi Xue Wang

With the rapid development of automotive ECUs(Electronic Control Unit), the fault diagnosis becomes increasingly complicated. And the link between fault and symptom becomes less obvious. In order to improve the maintenance quality and efficiency, the paper proposes a fault diagnosis approach based on data mining technologies. By making full use of data stream, we firstly extract fault symptom vectors by processing data stream, and then establish a diagnosis decision tree through the ID3 decision tree algorithm, and finally store the link rules between faults and the related symptoms into historical fault database as a foundation for the fault diagnosis. The database provides the basis of trend judgments for a future fault. To verify this approach, an example of diagnosing faults of entertainment ECU is showed. The test result testifies the reliability and validity of this diagnostic method and reduces the cost of ECU diagnosis.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881407
Author(s):  
Yasin Karagöz ◽  
Majid Mohammad Sadeghi

In this study, it was aimed to operate today’s compression ignition engines easily in dual-fuel mode with a developed electronic control unit. Especially, diesel engines with mechanical fuel system can be easily converted to common-rail fuel system with a developed electronic control unit. Also, with this developed electronic control unit, old technology compression ignition engines can be turned into dual-fuel mode easily. Thus, thanks to the flexibility of engine maps to be loaded into the electronic control unit, diesel engines can conveniently be operated with alternative gas fuels and diesel dual fuel. In particular, hydrogen, an alternative, environmentally friendly, and clean gas fuel, can easily be used with diesel engines by pilot spraying. Software and hardware development of electronic control unit are made, in order to operate a diesel engine with diesel+hydrogen dual fuel. Finally, developed electronic control unit was reviewed on 1500 r/min stable engine speed on different hydrogen energy rates (0%, 15%, 30%, and 45% hydrogen) according to thermic efficiency and emissions (CO, total unburned hydrocarbons, NOx, and smoke), and apart from NOx emissions, a significant improvement has been obtained. There was no increased NOx emission on 15% hydrogen working condition; however, on 45% hydrogen working condition, a dramatic increase arose.


2014 ◽  
Vol 971-973 ◽  
pp. 1726-1729
Author(s):  
Ying Liu ◽  
Dian Ren Chen ◽  
Lei Chen

A radar target simulation system based on DRFM is designed in this paper ,in this system, the radar signal that is amplified and conversioned by the receive analog circuits is directly sampled by the ADC of DRFM, then the sampled data is stored in QDR2 SRAM array. When need to generate radar target simulation signal, the radar signal data is read from the QDR2 SRAM array and synthesis radar target simulation signal with the target characteristic parameters provided by the host computer. It can be widely used in various radar simulator occasions.


2014 ◽  
Vol 494-495 ◽  
pp. 242-245
Author(s):  
Xin Qiang Liu ◽  
Tian Yi Yan

With the development of automotive electronics industry, the car which has electronically controlled air suspension is gained wide application. we designed an electronic control unit of automobile electronically controlled air suspension system (ECAS) including the hardware system which include the speed signal collection and processing circuit, the solenoid valve drive circuit, the CAN communication design, height detection circuit, Freescale microcontroller etc and the control strategy while propose some the basic ideas, based on Freescale microcontroller, after introducing the composition and the principle of electronically controlled air suspension. The ECAS can improve vehicle fuel economy, ride comfort and traffic-ability.


2012 ◽  
Vol 490-495 ◽  
pp. 13-18 ◽  
Author(s):  
Ran Chen ◽  
Lin Mi ◽  
Wei Tan

Hardware-in-the-loop simulation (HILS) is a scheme that incorporates some hardware components of primary concern in the numerical simulation environment. This paper discusses the implementation and benefits of using the HIL testing system for electronic control unit of dual-clutch transmission (DCT) vehicle.


Sign in / Sign up

Export Citation Format

Share Document