scholarly journals Corrosion Resistance of MgZn Alloy Covered by Chitosan-Based Coatings

2021 ◽  
Vol 22 (15) ◽  
pp. 8301
Author(s):  
Iryna Kozina ◽  
Halina Krawiec ◽  
Maria Starowicz ◽  
Magdalena Kawalec

Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank’s solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank’s solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.

2015 ◽  
Vol 814 ◽  
pp. 132-136 ◽  
Author(s):  
Xian Yang Hua ◽  
Mei Feng He ◽  
Xiao Qin Zhou

Magnesium is one of the elements necessary for the body, is the man behind the body’s content of potassium ions within the cell are involved in a series of metabolic processes in vivo, including the formation of bone cells , acceleration of bone healing ability. Resulting from the good mechanical properties and biocompatibility, magnesium alloy is used in medical intervention material, but the high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work the medical magnesium alloy surface are dipped and coated with polylactic acid, so that obtain a dense uniform polylactic acid coating. And the corrosion resistance of the coating is studied in order to obtain controlled degradable and corrosion resisted magnesium alloy biological material. This paper mainly studies the influence of different concentrations of polylactic acid coating on AZ91D magnesium alloy corrosion resistance. The coated samples were immersed in Hank’s solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. This research is about the influence of the coating on the corrosion resistance of magnesium alloy through the open circuit potential, polarization curves, electrochemical impedance spectroscopy and Mott-Schottky. The results confirmed that the polylactic acid slow down the corrosion rate of AZ91D magnesium alloys in Hank’s solution. And along with the increase of poly lactic acid concentration, the corrosion resistance of magnesium alloys is improved. There is a wide variation of the corrosion morphology magnesium alloy AZ91D specimens after the surface modification using polylactic acid coating, compared with the unmodified.


BIBECHANA ◽  
2012 ◽  
Vol 8 ◽  
pp. 8-16
Author(s):  
Jagadeesh Bhattarai

Synergistic effect of the simultaneous additions of tungsten and tantalum in the extremely high corrosion resistance properties of the spontaneously passivated sputter–deposited W–xTa alloys was investigated using a non-destructive angle resolved X-ray photoelectron spectroscopy (angle resolved XPS) techniques in this study. In-depth surface analyses of the thin passive films formed on the spontaneously passivated amorphous/nanocrystalline W–xTA alloys using angle resolved XPS analyses revealed that the high corrosion resistance of the alloys is mostly due to the formation of homogeneous passive double oxyhydroxide films consisting of Wox and Ta4+ cations with a small concentration gradients in–depth particularly after immersion between 20–168 h in 12 M HCl solution open to air at 30°C. Consequently, tantalum metal acts synergistically with tungsten in enhancing the spontaneous passivity as well as the high corrosion resistance of the sputter–deposited binary W–xTa alloys in 12 M HCl solution.Keywords: Sputter deposition; W–xTa alloys; 12 M HCl; Take-off angleDOI: http://dx.doi.org/10.3126/bibechana.v8i0.4784BIBECHANA 8 (2012) 8-16


2015 ◽  
Vol 62 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Jie Sun ◽  
Gang Wang

Purpose – The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the chemical valence state of the film elements were investigated. Design/methodology/approach – The methodology comprised preparation of coatings at different temperatures, which then were characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, an electrochemistry workstation and by means of X-ray photoelectron spectroscopy. Findings – The conversion coating had a micro-cracked morphology. The conversion coatings were composed of MgO (or Mg-OH), CeO2 and Ce2O3. The best corrosion resistance of the cerium passivation film appeared when the treatment temperature was about 35°C. Originality/value – The corrosion current densities of conversion coatings were lower by one to two orders of magnitude than the corrosion current density of the blank sample. The rare earth passivation coating prepared under the best condition could reduce the corrosion current to 3.548 × 10−6 A/cm2.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Luca Pezzato ◽  
Katya Brunelli ◽  
Riccardo Babbolin ◽  
Paolo Dolcet ◽  
Manuele Dabalà

In this work, solutions containing lanthanum salts were used for a post-treatment of sealing to increase the corrosion resistance of PEO coated AZ91 alloy. PEO coatings were produced on samples of AZ91 magnesium alloy using an alkaline solution containing sodium hydroxide, sodium phosphates, and sodium silicates. The sealing treatment was performed in a solution containing 12 g/L of La(NO3)3at pH 4 at different temperatures and for different treatment times. Potentiodynamic polarization test, an EIS test, showed that the sealing treatment with solution containing lanthanum nitrate caused a remarkable increase in the corrosion resistance. The corrosion behavior was correlated with the surface morphology and elemental composition evaluated with scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the sealing treatment at 50°C for 30 min resulted in being the most promising to increase the corrosion properties of PEO treated samples because of the formation of a homogeneous sealing layer, mainly composed of La(OH)3.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 201
Author(s):  
Elisangela Aparecida dos Santos de Almeida ◽  
Julio Cesar Giubilei Milan ◽  
César Edil da Costa ◽  
Cristiano Binder ◽  
José Daniel Biasoli de Mello ◽  
...  

In cold rolling, a textured roll can be used to imprint a desired surface topography onto the sheet during rolling. This work proposes the use of diamond-like carbon (DLC) coatings to protect the surface topography of the rolls in replacement of the carcinogenic hard chrome. For that, hydrogenated amorphous carbon (a-C:H) was deposited on plasma nitrided tool steel, both for ground and textured specimens. Changes in surface topography due to DLC coating were assessed using a confocal microscope. Coating adhesion was evaluated using the method VDI 3198. The specimens were characterized using X-ray diffraction (XRD), microhardness test and scanning electron microscopy (SEM). The coating was characterized using Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS). The results showed a soft multilayer coating consisting of a plasma nitrided layer for load support, a Si-rich interlayer to improve adhesion and an a-C:H top layer. DLC deposition reduced the roughness of the textured specimens. The coating resulted in relatively stable friction and good durability, with small damage and negligible wear even under dry sliding.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


MRS Advances ◽  
2016 ◽  
Vol 1 (6) ◽  
pp. 433-439 ◽  
Author(s):  
Asghar Ali ◽  
Patrick Morrow ◽  
Redhouane Henda ◽  
Ragnar Fagerberg

AbstractThis study reports on the preparation of cobalt doped zinc oxide (Co:ZnO) films via pulsed electron beam ablation (PEBA) from a single target containing 20 w% Co on sapphire (0001) and silicon (100) substrates. The films have been deposited at various temperatures (350оC, 400оC, 450оC) and pulse frequencies (2 Hz, 4 Hz), under a background argon (Ar) pressure of about 3 mtorr, and an accelerating voltage of 14 kV. The surface morphology has been examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). According to SEM analysis, the films consist of nano-globules whose size is in the range of 80-178 nm. Energy dispersive x-ray spectroscopy (EDX) reveals that deposition is congruent and the prepared films contain ∼20±5 w% cobalt. It has been found that the nano-globules in the deposited films are cobalt-rich zones containing ∼70 w% Co. From x-ray photoelectron spectroscopy (XPS) analysis, Co 2p3/2 peaks indicate that the deposited films contain CoO (binding energy = 780.5 eV) as well as metallic Co (binding energy = 778.1-778.5 eV). X-ray diffraction (XRD) analysis supports the presence of metallic Co hcp phase (2ϴ = 44.47° and 47.43°) in the films.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dan Wang ◽  
Qingdong Zhong ◽  
Jian Yang ◽  
Shujian Zhang

Purpose This paper aims to search the optimum content of Ni on the microstructure, phase and electrochemical behavior of high-strength low alloy (HSLA) steel in the 3.5 wt.% NaCl solution. Design/methodology/approach The microstructure and corrosion resistance of Ni-containing HSLA steel in the simulated marine environment was studied by optical microscopy, scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. Findings The sample containing 3.55 wt.% of nickel exhibited a finer grain size of 10 μm and a lower icorr of 2.169 µA cm−2. The XRD patterns showed that the Fe-Cr-Ni solid solution, FeC and Cr3C2 were observed in samples when Ni was added. Besides, the 3.55 wt.% of nickel addition enhanced the charge transfer resistance of the low alloy steel which suggested the sample possessed excellent inhibition of electrochemical reaction and corrosion resistance. The XPS spectrum suggested that nickel was beneficial to improve the corrosion resistance of steel by forming protective oxides, and the ratio of Fe2+/Fe3+ in protective oxides was increased. Practical implications Finding the comprehensive performance of HSLA steel which can be applied to unmanned surface vehicles in marine operations. Originality/value This study has a guiding significance for optimizing the composition of HSLA steel in a Cl- containing environment.


2019 ◽  
Vol 6 (3) ◽  
pp. 181824 ◽  
Author(s):  
William Vallejo ◽  
Angie Rueda ◽  
Carlos Díaz-Uribe ◽  
Carlos Grande ◽  
Patricia Quintana

This study synthesized and characterized composites of graphene oxide and TiO 2 (GO–TiO 2 ). GO–TiO 2 thin films were deposited using the doctor blade technique. Subsequently, the thin films were sensitized with a natural dye extracted from a Colombian source ( Bactris guineensis ). Thermogravimetric analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements were used for physico-chemical characterization. All the samples were polycrystalline in nature, and the diffraction signals corresponded to the TiO 2 anatase crystalline phase. Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) verified the synthesis of composite thin films, and the SEM analysis confirmed the TiO 2 films morphological modification after the process of GO incorporation and sensitization. XPS results suggested a possibility of appearance of titanium (III) through the formation of oxygen vacancies (O v ). Furthermore, the optical results indicated that the presence of the natural sensitizer and GO improved the optical properties of TiO 2 in the visible range. Finally, the photocatalytic degradation of methylene blue was studied under visible irradiation in aqueous solution, and pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation. These results indicated that the presence of GO has an important synergistic effect in conjunction with the natural sensitizer, reaching a photocatalytic yield of 33%.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


Sign in / Sign up

Export Citation Format

Share Document