scholarly journals Overview of Algorithms for Using Particle Morphology in Pre-Detonation Nuclear Forensics

Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 340
Author(s):  
Tom Burr ◽  
Ian Schwerdt ◽  
Kari Sentz ◽  
Luther McDonald ◽  
Marianne Wilkerson

A major goal in pre-detonation nuclear forensics is to infer the processing conditions and/or facility type that produced radiological material. This review paper focuses on analyses of particle size, shape, texture (“morphology”) signatures that could provide information on the provenance of interdicted materials. For example, uranium ore concentrates (UOC or yellowcake) include ammonium diuranate (ADU), ammonium uranyl carbonate (AUC), sodium diuranate (SDU), magnesium diuranate (MDU), and others, each prepared using different salts to precipitate U from solution. Once precipitated, UOCs are often dried and calcined to remove adsorbed water. The products can be allowed to react further, forming uranium oxides UO3, U3O8, or UO2 powders, whose surface morphology can be indicative of precipitation and/or calcination conditions used in their production. This review paper describes statistical issues and approaches in using quantitative analyses of measurements such as particle size and shape to infer production conditions. Statistical topics include multivariate T tests (Hotelling’s ), design of experiments, and several machine learning (ML) options including decision trees, learning vector quantization neural networks, mixture discriminant analysis, and approximate Bayesian computation (ABC). ABC is emphasized as an attractive option to include the effects of model uncertainty in the selected and fitted forward model used for inferring processing conditions.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaolin Lu ◽  
Xiaojuan Hu ◽  
Yao Lu

Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis.


2009 ◽  
Vol 1172 ◽  
Author(s):  
Kyle Christopher Smith ◽  
Timothy Fisher

AbstractThis paper describes a modeling approach to target aspects of heat conduction in metal hydride powders that are essential to metal hydrides as viable H2storage media, including particle morphology distribution, size distribution, particle packing properties at specified solid fraction, and effective thermal conductivity. An isotropic fracture model is presented that replicates features of particle size and shape distributions observed experimentally. The discrete element method is used to simulate evolution of metal hydride particle contact networks during quasi-static consolidation of decrepitated metal hydride powders. Finally, the effective thermal conductivity of such a powder is modeled assuming that contact conductance is the same for each interparticle contact.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Khalida Akhtar ◽  
Saniya Yousafzai

Abstract Calcium carbonate powder comprising uniform nanoparticles of novel morphology was synthesized under extensively optimized trial parameters. The as-prepared ultrafine rod shape CaCO3 particles after characterizations were used as an antiwear/antifriction additive in commercial lithium grease (CLG) of different specifications. The effect of the added particles on the antifriction and antiwear properties of the blended commercial greases was explored by using a ball-on-disk tribometer. The observed data were compared with the additized grease having commercially available CaCO3 powder. Results exposed that uniformity in particle size and shape is a key factor for the improvement of tribological properties and reproducibility of the experimental results. Therefore, the as-prepared monodispersed rod shapes CaCO3 particles as additives considerably improved the tribological properties of the CLG as compared with the irregular particles of the commercial calcium carbonate. These blends showed the best results at the optimum amount of 3 wt% of the added CaCO3 particles. Among the three selected greases, the additized Momin grease exhibited best antiwear/antifriction performance as compared with the additized Awami and Sinopec greases.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (9) ◽  
pp. 565-576 ◽  
Author(s):  
YUCHENG PENG ◽  
DOUGLAS J. GARDNER

Understanding the surface properties of cellulose materials is important for proper commercial applications. The effect of particle size, particle morphology, and hydroxyl number on the surface energy of three microcrystalline cellulose (MCC) preparations and one nanofibrillated cellulose (NFC) preparation were investigated using inverse gas chromatography at column temperatures ranging from 30ºC to 60ºC. The mean particle sizes for the three MCC samples and the NFC sample were 120.1, 62.3, 13.9, and 9.3 μm. The corresponding dispersion components of surface energy at 30°C were 55.7 ± 0.1, 59.7 ± 1.3, 71.7 ± 1.0, and 57.4 ± 0.3 mJ/m2. MCC samples are agglomerates of small individual cellulose particles. The different particle sizes and morphologies of the three MCC samples resulted in various hydroxyl numbers, which in turn affected their dispersion component of surface energy. Cellulose samples exhibiting a higher hydroxyl number have a higher dispersion component of surface energy. The dispersion component of surface energy of all the cellulose samples decreased linearly with increasing temperature. MCC samples with larger agglomerates had a lower temperature coefficient of dispersion component of surface energy.


2020 ◽  
Vol 8 ◽  
Author(s):  
Leny Montheil ◽  
Virginia G. Toy ◽  
James M. Scott ◽  
Thomas M. Mitchell ◽  
David P. Dobson

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65.


2015 ◽  
Vol 670 ◽  
pp. 49-54 ◽  
Author(s):  
Yuriy A. Zaharov ◽  
Valeriy M. Pugachev ◽  
Kseniya A. Datiy ◽  
Anna N. Popova ◽  
Anastasiya S. Valnyukova ◽  
...  

In the paper, the particle morphology is considered and the slices of phase diagrams of nanosystems agreeable to the synthesis conditions are constructed according to the data obtained earlier by authors, as well as new results of the study of nanostructured Fe-Co, Fe-Ni, Co-Ni, Fe-Co-Ni, Fe-Pt, Cu-Ni and Ni-Cd powders. It is found that all considered polymetallic systems have common nature of the particle size spatial organization, i.e., 7-20 nm nanocrystals (for different systems) form highly compact aggregates (40-100 nm) which put together into loose porous agglomerates (up to 200-250 nm) and then into unconsolidated micron size formation of cloud type. It is classified uncovered features of nanostructured polymetallic phase diagrams in comparison with phase diagrams of bulk systems. Magnetic properties of nanosystems are studied.


2021 ◽  
Vol 2021 (9) ◽  
pp. 3-7
Author(s):  
Dmitriy Kostin ◽  
Aleksandr Amosov ◽  
Anatoliy Samboruk ◽  
Bogdan Chernyshev ◽  
Anton Kamynin

A comparison is made of the characteristics of metal powders of a hard magnetic alloy produced by centrifugal spraying and gas atomization. Comparative studies of particle morphology and particle size distribution of powders are presented in order to determine them.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Hussain, S. ◽  
M.K Abdul Hamid ◽  
A.R Mat Lazim ◽  
A.R. Abu Bakar

Brake wear particles resulting from friction between the brake pad and disc are common in brake system. In this work brake wear particles were analyzed based on the size and shape to investigate the effects of speed and load applied to the generation of brake wear particles. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) was used to identify the size, shape and element compositions of these particles. Two types of brake pads were studied which are non-asbestos organic and semi metallic brake pads. Results showed that the size and shape of the particles generatedvary significantly depending on the applied brake load, and less significantly on brake disc speed. The wear particle becomes bigger with increasing applied brake pressure. The wear particle size varies from 300 nm to 600 µm, and contained elements such as carbon, oxygen, magnesium, aluminum, sulfur and iron.


Sign in / Sign up

Export Citation Format

Share Document