ethylene removal
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 127843
Author(s):  
Shirjana Saud ◽  
Duc Ba Nguyen ◽  
Roshan Mangal Bhattarai ◽  
Nosir Matyakubov ◽  
Van Toan Nguyen ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 471
Author(s):  
Johannes de Bruijn ◽  
Ambar Gómez ◽  
Cristina Loyola ◽  
Pedro Melín ◽  
Víctor Solar ◽  
...  

Ethylene stimulates ripening and senescence by promoting chlorophyll loss, red pigment synthesis, and softening of tomatoes and diminishes their shelf-life. The aim of this work was to study the performance of a novel copper- and zinc-based ethylene scavenger supported by ion-exchange on a naturally occurring zeolite by analyzing its ethylene adsorption capacity and the influence of ethylene scavenging on quality attributes during the postharvest life of tomatoes. The influence of copper- and zinc-modified zeolites on ethylene and carbon dioxide concentrations and postharvest quality of tomatoes was compared with unmodified zeolite. Interactions among ethylene molecules and zeolite surface were studied by diffuse reflectance infrared Fourier transform spectroscopy in operando mode. The percentage of ethylene removal after eight days of storage was 57% and 37% for the modified zeolite and pristine zeolite, respectively. The major ethylene increase appeared at 9.5 days for the modified zeolite treatment. Additionally, modified zeolite delayed carbon dioxide formation by six days. Zeolite modified with copper and zinc cations favors ethylene removal and delays tomato fruit ripening. However, the single use of unmodified zeolite should be reconsidered due to its ripening promoting effects in tomatoes at high moisture storage conditions, as water molecules block active sites for ethylene adsorption.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 133 ◽  
Author(s):  
Shirjana Saud ◽  
Duc Ba Nguyen ◽  
Seung-Geon Kim ◽  
Ho Won Lee ◽  
Seong Bong Kim ◽  
...  

The adsorption and plasma-catalytic oxidation of dilute ethylene were performed in a pin-type corona discharge-coupled Pd/ZSM-5 catalyst. The catalyst has an adsorption capacity of 320.6 μ mol   g cat − 1 . The catalyst was found to have two different active sites activated at around 340 and 470 °C for ethylene oxidation. The removal of ethylene in the plasma catalyst was carried out by cyclic operation consisting of repetitive steps: (1) adsorption (60 min) followed by (2) plasma-catalytic oxidation (30 min). For the purpose of comparison, the removal of ethylene in the continuous plasma-catalytic oxidation mode was also examined. The ethylene adsorption performance of the catalyst was improved by the cyclic plasma-catalytic oxidation. With at least 80% of C2H4 in the feed being adsorbed, the cyclic plasma-catalytic oxidation was carried out for the total adsorption time of 8 h, whereas it occurred within 2 h of early adsorption in the case of catalyst alone. There was a slight decrease in catalyst adsorption capability with an increased number of adsorption cycles due to the incomplete release of CO2 during the plasma-catalytic oxidation step. However, the decreased rate of adsorption capacity was negligible, which is less than one percent per cycle. Since the activation temperature of all active sites of Pd/ZSM-5 for ethylene oxidation is 470 °C, the specific input energy requirement by heating the feed gas in order to activate the catalyst is estimated to be 544 J/L. This value is higher than that of the continuous plasma-catalytic oxidation (450 J/L) for at least 86% ethylene conversion. Interestingly, the cyclic adsorption and plasma-catalytic oxidation of ethylene is not only a low-temperature oxidation process but also reduces energy consumption. Specifically, the input energy requirement was 225 J/L, which is half that of the continuous plasma-catalytic oxidation; however, the adsorption efficiency and conversion rate were maintained. To summarize, cyclic plasma treatment is an effective ethylene removal technique in terms of low-temperature oxidation and energy consumption.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1507 ◽  
Author(s):  
Imam Prasetyo ◽  
Nur Indah Fajar Mukti ◽  
Teguh Ariyanto

Suppressing the amount of ethylene during storage has been of interest as a method to enhance shelf life of fruit. In this work, ethylene removal by adsorption using cobalt oxide-impregnated nanoporous carbon has been studied. Nanoporous carbon with a high surface area up to 2400 m2 g−1 was prepared by carbonization process biomass and synthetic polymer at 850 °C. Dispersion of cobalt oxide on porous carbon surface was carried out by an incipient wetness procedure followed by calcination process at 200 °C. Ethylene adsorption test was performed using a volumetric method in an ultrahigh vacuum rig constructed by Swagelok VCR® fittings. The results showed that the cobalt oxide/carbon system had significant ethylene adsorption capacity. Ethylene uptake increases with the increasing cobalt oxide loading on the carbon. The highest ethylene capacity of 16 mol kg−1 adsorbent was obtained by using 30 wt.% (weight percentage) of cobalt oxide dispersed in polymer-derived carbon. In closed storage, the ratio of 15 g adsorbent/kg fruit may extend the storage life up to 12 d, higher than that without adsorbent (3 d). Therefore, the results demonstrate the great potential use of cobalt oxide-impregnated nanoporous carbon as an adsorbent for ethylene removal during storage of fruit.


2018 ◽  
Vol 18 (1) ◽  
pp. 9 ◽  
Author(s):  
Imam Prasetyo ◽  
Nur Indah Fajar Mukti ◽  
Moh Fahrurrozi ◽  
Teguh Ariyanto

Ethylene is naturally generated by climacteric fruits and can promote the ripening process faster. For effective long-distance transport and subsequent storage, removing ethylene from the storage environment has been of interest to suppress its undesirable effect. In this study, ethylene removal by an adsorptive method using cobalt-loaded nanoporous carbon is studied. Cobalt oxide-loaded carbon was prepared by incipient wetness method followed by calcination process at 200 °C under inert flow. Ethylene adsorption test was performed at 20, 30, and 40 °C using a static volumetric test. The results showed that cobalt oxide/carbon system has significant ethylene adsorption capacity up to 3.5 times higher compared to blank carbon. A higher temperature adsorption is more favorable for this chemisorption process. Ethylene uptake increases from 100 to 150 mL g-1adsorbent STP by increasing cobalt oxide loading on carbon from 10 to 30 wt.% Co. The highest uptake capacity of 6 mmol ethylene per gram adsorbent was obtained using 30 wt.% cobalt oxide. Therefore, ethylene adsorption by cobalt-loaded nanoporous carbon may represent a potential method in ethylene removal and it could serve as a basis for development of ethylene scavenging material.


2018 ◽  
Vol 154 ◽  
pp. 01032 ◽  
Author(s):  
Nur Indah Fajar Mukti ◽  
Imam Prasetyo ◽  
Aswati Mindaryani ◽  
Shofwatunnida’ Septarini

Mangosteen rind is an important source of natural antioxidants. Due to the growing interest in extracting this anti cancer substances from the Mangosteen rind, the amount of this lignocellulosic residu has been generated significantly as byproduct. In this research, extraction-waste Mangosteen rind (EMP) was used as alternative precusor for production of carbon-based adsorbent for ethylene removal. Steam was used as activating agent and the effect of carbonization time and temperature on the development of pore structure were examined. Pyrolysis process was carried out by heating the Mangosteen rinds powder (180 μm - 355 μm) from ambient temperature up to carbonization temperature of 848 K and kept for 3 hours then followed by heating up to 1123 K and kept for 15 minutes under flowing N2 and steam. This process was repeated for several pyrolysis temperature (1053 K, 1073 K, 1083 K and 1103 K) and carbonization time (0 hours, 1 hour, 2 hours, and 3,5 hours). The carbon obtained was characterized in terms of its pore structure and ethylene uptake capacity. The results show that porous carbon obtained from pyrolysis of extraction-waste Mangosteen rind can be characterized as mesoporous carbon. The highest surface area of 1080 m2/g was obtained from pyrolysis of extraction-waste Mangosteen rinds with carbonization time of 3.5 hours and pyrolysis temperature of 1123 K. Furthermore, the mesopore portion and the specific surface area increased with the increasing carbonization time. From the ethylene uptake experiment, it was noted that the ethylene adsorption capacity of EMPC is 40.12 cm3/g.


2017 ◽  
Vol 57 (1S) ◽  
pp. 01AG04 ◽  
Author(s):  
Katsuyuki Takahashi ◽  
Takuma Motodate ◽  
Koichi Takaki ◽  
Shoji Koide

Sign in / Sign up

Export Citation Format

Share Document