scholarly journals The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 635
Author(s):  
Rasmus Jonsson ◽  
Phuoc Hoang Ho ◽  
Aiyong Wang ◽  
Magnus Skoglundh ◽  
Louise Olsson

Hydrocarbon traps can be used to bridge the temperature gap from the cold start of a vehicle until the exhaust after-treatment catalyst has reached its operating temperature. In this work, we investigate the effect of zeolite structure (ZSM-5, BEA, SSZ-13) and the effect of La addition to H-BEA and H-ZSM-5 on the hydrocarbon storage capacity by temperature-programmed desorption and DRIFT spectroscopy. The results show that the presence of La has a significant effect on the adsorption characteristics of toluene on the BEA-supported La materials. A low loading of La onto zeolite BEA (2% La-BEA) improves not only the toluene adsorption capacity but also the retention of toluene. However, a higher loading of La results in a decrease in the adsorbed amount of toluene, which likely is due to partial blocking of the pore of the support. High loadings of La in BEA result in a contraction of the unit cell of the zeolite as evidenced by XRD. A synergetic effect of having simultaneously different types of hydrocarbons (toluene, propene, and propane) in the feed is found for samples containing ZSM-5, where the desorption temperature of propane increases, and the quantity that desorbed increases by a factor of four. This is found to be due to the interaction between toluene and propane inside the structure of the zeolite.

Author(s):  
Dolapo Bola Adelabu ◽  
Emile Bredenhand ◽  
Sean van der Merwe ◽  
Angelinus Cornelius Franke

Abstract To exploit the potential of ecological intensification during sunflower cropping, it is crucial to understand the potential synergies between crop management and ecosystem services. We therefore examined the effect of pollination intensification on sunflower yield and productivity under various levels of soil fertilization over two seasons in the eastern Free State, South Africa. We manipulated soil fertility with fertilizer applications and pollination with exclusion bags. We found a synergetic effect between pollination and soil fertilization whereby increasing pollination intensity led to a far higher impact on sunflower yield when the soil had been fertilized. Specifically, the intensification of insect pollination increased seed yield by approximately 0.4 ton/ha on nutrient poor soil and by approximately 1.7 ton/ha on moderately fertilized soil. Our findings suggest that sunflower crops on adequate balanced soil fertility will receive abundant insect pollination and may gain more from both synergies than crops grown in areas with degraded soil fertility.


Author(s):  
Rizwana Mobin ◽  
Hamida-Tun-Nisa Chisti ◽  
Tauseef Ahmad Rangreez ◽  
Rafia Bashir ◽  
Altaf Ahmad Najar

The development and application of pesticides has contributed in a long way in making the “Green Revolution” possible. These newer pesticides have synergetic effect over the control of pests that otherwise have negative impact on the quality and quantity of food. The toxicity, persistence, and environmental pathway are some important criteria that determine the impacts on ecology and environment. The generalization of the impact of pesticides on different organisms is difficult as these are of broad spectrum chemical nature. However, the major problem that arises due to widespread use of pesticides is the contamination of water by pesticide runoff. The chemically contaminated water in turn leads to the much aggravated problems of bio-concentration and bio-magnification of these chemicals. While the bio-concentration describes the transfer of a chemical from surrounding into the tissue/body of organism, the bio-magnification is related to the increased concentration of such a chemical along a food chain.


2015 ◽  
Vol 15 (10) ◽  
pp. 2201-2208 ◽  
Author(s):  
M. Mucciarelli ◽  
F. Donda ◽  
G. Valensise

Abstract. While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 557
Author(s):  
Hamad AlMohamadi ◽  
Kevin J. Smith

This study reports on the activity and stability of PdO/γ-AlOOH/γ-Al2O3 monolith catalysts, promoted with varying amounts of CeO2, for CH4 oxidation. Although the beneficial effects of CeO2 have been reported for powdered catalysts, this study used a cordierite (2MgO.2Al2O3.5SiO2) mini-monolith (400 cells per square inch, 1 cm diameter × 2.5 cm length; ~52 cells), washcoated with a suspension of γ-Al2O3 combined with boehmite (γ-AlOOH), followed by sequential deposition of Ce and Pd (0.5 wt.%) by wetness impregnation. The monolith catalysts’ CH4 oxidation activity and stability were assessed in the presence of CO, CO2, H2O and SO2 at low temperature (≤550 °C), relevant to emission control from lean-burn natural gas vehicles (NGVs). The CeO2 loading (0 to 4 wt.%) did not significantly impact the adhesion and thermal stability of the washcoat, but CeO2 reduced the inhibition of CH4 oxidation by H2O and SO2. The catalyst activity, measured by temperature-programmed methane oxidation (TPO) in a dry feed gas with 0.07 vol.% CH4, showed that adding CeO2 to the γ-AlOOH/γ-Al2O3 washcoat suppressed the activity of the catalysts; whereas, CeO2 improved the catalyst activity when H2O (2 and 5 vol.%) was present in the feed gas. Moreover, adding CeO2 decreased catalyst deactivation that occurred in the presence of 10 vol.% H2O and 5 ppmv SO2 at 500 °C, measured over a 25 h time-on-stream (TOS) period. The highest catalyst activity and stability for CH4 oxidation in the presence of H2O was obtained by adding 2 wt.% CeO2 to the washcoat.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 849
Author(s):  
Gracia Shokano ◽  
Zahir Dehouche ◽  
Basile Galey ◽  
Georgeta Postole

The present work involves the development of a novel method for the fabrication of zirconium nickel (Zr(x)Ni(y)) alloy used as a nanocatalyst to improve the hydrogen storage properties of the Mg/MgH2 system. The catalyst was fabricated through the high-pressure reactor and activated under hydrogen prior to being mechanically milled with the MgH2 for 5 h under argon. The microstructure characterisation of the samples was determined via SEM-EDX (scanning electron microscope analysis–energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and FE-HRTEM (field emission high resolution transmission electron microscopy), and the desorption characteristic of the nanocomposite (10 wt.% Zr(x)Ni(y)–MgH2) was determined via TPD (temperature-programmed desorption). The nanostructured MgH2 powder milled with 10 wt.% of the activated Zr(x)Ni(y) based nanocatalyst resulted in a faster hydrogen release—5.9 H2-wt.% at onset temperature 210 °C/peak temperature 232 °C. The observed significant improvement in the hydrogen desorption properties was likely to be the result of the impact of the highly dispersed catalyst on the surface of the Mg/MgH2 system, the reduction in particle size during the ball milling process and/or the formation of Mg0.996Zr0.004 phase during the milling process.


2020 ◽  
Author(s):  
Yuliya Troitskaya ◽  
Alexander Kandaurov ◽  
Daniil Sergeev ◽  
Olga Ermakova ◽  
Dmitrii Kozlov ◽  
...  

<p>Showing the record strengths and growth-rates, a number of recent hurricanes have highlighted needs for improving forecasts of tropical cyclone intensities most sensitive to models of the air-sea coupling. Especially challenging is the nature and effect of the very small-scale phenomena, the sea-spray and foam, supposed to strongly affecting the momentum- and heat- air-sea fluxes at strong winds. This talk will focus on our progress in understanding and describing these "micro-scale" processes, their physical properties, the spray and foam mediated air-sea fluxes and the impact on the development of marine storms.</p><p>The starting points for this study were two laboratory experiments. The first one was designed for investigation of the spray generation mechanisms at high winds. We found out 3 dominant spray generating mechanisms: stretching liquid ligaments, bursting bubbles, splashing of the falling droplets and "bag-breakup". We investigated the efficiency spray-production mechanisms and developed the empirical statistics of the numbers of the spray generating events of each type. Basing on the "white-cap method" we found out the dependence of the spray-generating events on the wind fetch. The main attention was paid to the "bag-breakup" mechanism. Here we studied in detail the statistics of spray produced from one "bag-breakup" event. Basing on these developments, we estimated heat and momentum fluxes from the spray-generating events of different types and found out the dominant role of the "bag-breakup" mechanism.</p><p>To estimate the direct heat and momentum fluxes from the ocean surface to the atmosphere, we studied in the special experiment the foam impact on the short-wave part of the surface waves and the heat momentum exchange in the atmospheric boundary layer at high winds. Based on these results, we suggest a simple model for the aerodynamic and temperature roughness and the eddy viscosity in the turbulent boundary layer over a fractionally foam-covered water surface.</p><p>The synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peculiarities of the air-sea fluxes at stormy conditions. Calculations within the nonhydrostatic axisymmetric model show, that the "microphysics" of the air-sea coupling significantly accelerate development of the ocean storm.</p><p>This work was supported by RFBR grant 19-05-00249 and RSF grant 19-17-00209.</p>


2021 ◽  
Vol 8 (11) ◽  
pp. 173
Author(s):  
Kwong Ming Tse ◽  
Daniel Holder

In this study, a novel expandable bicycle helmet, which integrates an airbag system into the conventional helmet design, was proposed to explore the potential synergetic effect of an expandable airbag and a standard commuter-type EPS helmet. The traumatic brain injury mitigation performance of the proposed expandable helmet was evaluated against that of a typical traditional bicycle helmet. A series of dynamic impact simulations on both a helmeted headform and a representative human head with different configurations were carried out in accordance with the widely recognised international bicycle helmet test standards. The impact simulations were initially performed on a ballast headform for validation and benchmarking purposes, while the subsequent ones on a biofidelic human head model were used for assessing any potential intracranial injury. It was found that the proposed expandable helmet performed admirably better when compared to a conventional helmet design—showing improvements in impact energy attenuation, as well as kinematic and biometric injury risk reduction. More importantly, this expandable helmet concept, integrating the airbag system in the conventional design, offers adequate protection to the cyclist in the unlikely case of airbag deployment failure.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 550 ◽  
Author(s):  
Denys Zagirniak ◽  
Inna Khovrak ◽  
Viktoriia Perevozniuk

The globalization of educational space shows that university education should meet the needs of society based on the ethical principles of interaction between participants of educational process and use innovative teaching methods. Therefore the purpose of the study is to substantiate the importance of convergence of systems of education at Scottish and Ukrainian universities in order to provide ethical leadership in the field of education. A systematic approach to the realization of the purpose of the study allowed solving the main tasks: systematization of the strengths of Scottish education, justification of the impact of university social responsibility on providing ethical leadership in education, comparing the main indicators of the process of providing educational services in Scotland and Ukraine.As a result, it is established that the synergetic effect from the application of the concept of ethical leadership is achieved as a result of the interaction of all participants in the educational process, namely: the state (awareness and realization of the social mission to develop the potential of youth); universities (development of educational programs taking into account the needs of modern society and the use of teaching methods capable of forming the necessary competences for future specialists); students (interest in obtaining quality education).  


2014 ◽  
Vol 2 (12) ◽  
pp. 7507-7519
Author(s):  
M. Mucciarelli ◽  
F. Donda ◽  
G. Valensise

Abstract. While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The recent 2012 earthquakes in Emilia, Italy, raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold-and-thrust belt. Based on the analysis of over 400 borehole datasets from wells drilled along the Ferrara-Romagna Arc, a large oil and gas reserve in the southeastern Po Plain, we found that the 2012 earthquakes occurred within a cluster of sterile wells surrounded by productive ones. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. Our findings have two important practical implications: (1) they may allow major seismogenic zones to be identified in areas of sparse seismicity, and (2) suggest that gas should be stored in exploited reservoirs rather than in sterile hydrocarbon traps or aquifers as this is likely to reduce the hazard of triggering significant earthquakes.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 870
Author(s):  
Hadi Dib ◽  
Rebecca El Khawaja ◽  
Guillaume Rochard ◽  
Christophe Poupin ◽  
Stéphane Siffert ◽  
...  

CuAlCe oxides were obtained from hydrotalcite-type precursors by coprecipitation using a M2+/M3+ ratio of 3. The collapse of the layered double hydroxide structure following the thermal treatment leads to the formation of mixed oxides (CuO and CeO2). The catalytic performance of the copper-based catalysts was evaluated in the total oxidation of two Volatile Organic Compounds (VOCs): ethanol and toluene. XRD, SEM Energy-Dispersive X-ray Spectrometry (EDX), H2-temperature programmed reduction (TPR) and XPS were used to characterize the physicochemical properties of the catalysts. A beneficial effect of combining cerium with CuAl-O oxides in terms of redox properties and the abatement of the mentioned VOCs was demonstrated. The sample with the highest content of Ce showed the best catalytic properties, which were mainly related to the improvement of the reducibility of the copper species and their good dispersion on the surface. The presence of a synergetic effect between the copper and cerium elements was also highlighted.


Sign in / Sign up

Export Citation Format

Share Document