Modulatory Effect of Substance P to the Brain Stem Locomotor Command in Lampreys

2005 ◽  
Vol 93 (4) ◽  
pp. 2127-2141 ◽  
Author(s):  
Frédéric Brocard ◽  
Cédric Bardy ◽  
Réjean Dubuc

Substance P initiates locomotion when injected in the brain stem of mammals. This study examined the possible role of this peptide on the supraspinal locomotor command system in lampreys. Substance P was bath applied or locally injected into an in vitro isolated brain stem, and the effects of the drug were examined on reticulospinal cells and on the occurrence of swimming in a semi-intact preparation. Bath applications of substance P induced sustained depolarizations occurring rhythmically in intracellularly recorded reticulospinal cells. Spiking activity was superimposed on the depolarizations and swimming was induced. The sustained depolarizations were abolished by tetrodotoxin, and substance P did not affect the membrane resistance of reticulospinal cells nor their firing properties, suggesting that it did not directly effect reticulospinal cells. To establish where the effects were exerted, successive lesions of the brain stem were made as well as local applications of the drug in the brain stem. Removing the mesencephalon abolished the sustained depolarizations, whereas large ejections of the drug in the mesencephalon excited reticulospinal cells and elicited bouts of swimming. More local injections into the mesencephalic locomotor region (MLR) also elicited swimming. After an injection of substance P, the current threshold needed to induce locomotion by MLR stimulation was decreased, and the size of the postsynaptic responses of reticulospinal cells to MLR stimulation was increased. Substance P also reduced the frequency of miniature spontaneous postsynaptic currents in reticulospinal cells. Taken together, these results suggest that substance P plays a neuromodulatory role on the brain stem locomotor networks of lampreys.

2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


1997 ◽  
Vol 17 (10) ◽  
pp. 1089-1096 ◽  
Author(s):  
Kazunori Toyoda ◽  
Kenichiro Fujii ◽  
Setsuro Ibayashi ◽  
Tetsuhiko Nagao ◽  
Takanari Kitazono ◽  
...  

We tested the hypothesis that nitric oxide (NO) plays a role in CBF autoregulation in the brain stem during hypotension. In anesthetized rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and its branches were measured through an open cranial window during stepwise hemorrhagic hypotension. During topical application of 10−5 mol/L and 10−4 mol/L Nω-nitro-L-arginine (L-NNA), a nonselective inhibitor of nitric oxide synthase (NOS), CBF started to decrease at higher steps of mean arterial blood pressure in proportion to the concentration of L-NNA in stepwise hypotension (45 to 60 mm Hg in the 10−5 mol/L and 60 to 75 mm Hg in the 10−4 mol/L L-NNA group versus 30 to 45 mm Hg in the control group). Dilator response of the basilar artery to severe hypotension was significantly attenuated by topical application of L-NNA (maximum dilatation at 30 mm Hg: 16 ± 8% in the 10−5 mol/L and 12 ± 5% in the 10−4 mol/L L-NNA group versus 34 ± 4% in the control group), but that of the branches was similar between the control and L-NNA groups. Topical application of 10−5 mol/L 7-nitro indazole, a selective inhibitor of neuronal NOS, did not affect changes in CBF or vessel diameter through the entire pressure range. Thus, endothelial but not neuronal NO seems to take part in the regulation of CBF to the the brain stem during hypotension around the lower limits of CBF autoregulation. The role of NO in mediating dilatation in response to hypotension appears to be greater in large arteries than in small ones.


1996 ◽  
Author(s):  
Βασιλική Μάλλιου

ΧΟΛΙΝΕΡΓΙΚΟΙ ΜΗΧΑΝΙΣΜΟΙ ΠΑΙΖΟΥΝ ΣΗΜΑΝΤΙΚΟ ΡΟΛΟ ΣΤΟΝ ΕΛΕΓΧΟ ΤΗΣ ΑΝΑΠΝΟΗΣ, ΑΛΛΑ Η ΚΑΤΑΝΟΜΗ ΤΩΝ ΜΟΥΣΚΑΡΙΝΙΚΩΝ ΧΟΛΙΝΕΡΓΙΚΩΝ ΥΠΟΔΟΧΕΩΝ ΔΕΝ ΕΧΟΥΝ ΧΑΡΤΟΓΡΑΦΗΘΕΙ ΣΤΑ ΑΝΑΠΝΕΥΣΤΙΚΑ ΚΕΝΤΡΑ ΤΟΥ ΣΤΕΛΕΧΟΥ ΤΟΥ ΕΓΚΕΦΑΛΟΥ. ΤΟ ΠΡΩΤΟ ΜΕΡΟΣ ΤΗΣ ΠΑΡΟΥΣΑΣ ΕΡΓΑΣΙΑΣ ΕΞΕΤΑΣΕ ΤΗΝ ΥΠΟΘΕΣΗ ΟΤΙ ΥΠΑΡΧΕΙ ΕΤΕΡΟΓΕΝΗ ΚΑΤΑΝΟΜΗ MACHR ΥΠΟΔΟΧΕΩΝ ΣΤΑ ΑΝΑΠΝΕΥΣΤΙΚΑ ΚΕΝΤΡΑ. ΧΡΗΣΙΜΟΠΟΙΗΘΗΚΕ Η ΜΕΘΟΔΟΣ IN VITRO AUTORADIOGRAPHY ΓΙΑΤΗΝ ΠΟΣΟΤΙΚΗ ΚΑΙ ΠΟΙΟΤΙΚΗ ΚΑΤΑΝΟΜΗ ΤΩΝ ΥΠΟΔΟΧΕΩΝ ΣΤΑ ΑΝΑΠΝΕΥΣΤΙΚΑ ΚΕΝΤΡΑ. Η ΔΙΑΤΡΙΒΗ ΕΔΕΙΞΕ ΓΙΑ ΠΡΩΤΗ ΦΟΡΑ ΟΤΙ ΣΤΑ ΑΝΑΠΝΕΥΣΤΙΚΑ ΚΕΝΤΡΑ ΤΟΥ ΕΓΚΕΦΑΛΟΥ ΥΠΑΡΧΕΙ ΕΤΕΡΟΓΕΝΗ ΚΑΤΑΝΟΜΗ MACHR ΥΠΟΔΟΧΕΩΝ. ΕΤΣΙ ΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΠΑΡΟΥΣΑΣ ΕΡΓΑΣΙΑΣ ΕΙΝΑΙ ΟΥΣΙΑΣΤΙΚΟ ΠΡΩΤΟ ΒΗΜΑ ΓΙΑ ΜΕΛΛΟΝΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΜΕ ΣΤΟΧΟ ΝΑ ΔΙΕΥΚΡΙΝΙΣΤΕΙ Ο ΛΕΙΤΟΥΡΓΙΚΟΣ ΡΟΛΟΣ ΤΩΝ MACHR ΥΠΟΔΟΧΕΩΝ ΤΟΥ ΣΤΕΛΕΧΟΥ ΣΤΟΝ ΕΛΕΓΧΟ ΤΗΣ ΑΝΑΠΝΟΗΣ. ΤΟ ΔΕΥΤΕΡΟ ΜΕΡΟΣ ΤΗΣ ΔΙΑΤΡΙΒΗΣ ΕΞΕΤΑΣΕ ΤΗΝ ΔΡΑΣΗ ΤΟΥ ΜΟΥΣΚΑΡΙΝΙΚΟΥ ΑΓΩΝΙΣΤΗ BETH ΚΑΙ ΤΩΝ ΜΟΥΣΚΑΡΙΝΙΚΩΝ ΑΝΤΑΓΩΝΙΣΤΩΝ 4-DAMP ΚΑΙ METHATRAMINE ΣΤΗΝ ΑΝΑΠΝΕΥΣΤΙΚΗ ΣΥΧΝΟΤΗΤΑ (AL) ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ NREM ΚΑΙ REM ΥΠΝΟΥ. Η ΕΡΓΑΣΙΑ ΕΔΕΙΞΕ ΟΤΙ Η BETH ΣΤΟ MPRF ΤΟΥ ΣΤΕΛΕΧΟΥ ΠΡΟΚΑΛΕΙ ΜΕΙΩΣΗ ΤΗΣ ΑΣ (P < 0.05) ΚΑΤΑ NREMΚΑΙ REM ΥΠΝΟΥ. ΜΙΚΡΟΕΓΧΥΣΕΙΣ 4-DAMP ΚΑΙ METH ΧΡΗΣΙΜΟΠΟΙΗΘΗΚΑΝ ΓΙΑ ΤΗΝ ΕΞΕΤΑΣΗΤΗΣ ΥΠΟΘΕΣΗΣ ΟΤΙ Η ΜΕΙΩΣΗ ΤΗΣ ΑΣ ΔΕΝ ΜΠΟΡΕΙ ΝΑ ΞΕΧΩΡΙΣΤΕΙ ΑΠΟ ΤΟ ΣΤΑΔΙΟ ΕΓΡΗΓΟΡΣΗΣ. Η ΕΡΓΑΣΙΑ ΑΥΤΗ ΕΔΕΙΞΕ ΓΙΑ ΠΡΩΤΗ ΦΟΡΑ ΟΤΙ ΟΙ ΜΟΥΣΚΑΡΙΝΙΚΟΙ ΑΝΤΑΓΩΝΙΣΤΕΣ 4-DAMP ΚΑΙ METH ΔΕΝ ΕΜΠΟΔΙΣΑΝ ΤΗΝ ΜΕΙΩΣΗ ΤΗΣ ΑΣ ΠΟΥ ΣΥΝΟΔΕΥΕΙ ΤΟ ΣΤΑΔΙΟ ΕΓΡΗΓΟΡΣΗΣ.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Development ◽  
1962 ◽  
Vol 10 (3) ◽  
pp. 373-382
Author(s):  
M. S. Lakshmi

Brachet's (1950) strong emphasis on the role of —SH-containing proteins in the process of induction has stimulated a study of the interference in the normal process of morphogenesis of chick embryos by chloroacetophenone, which has been described by Beatty (1951) as a specific and irreversible —SH inhibitor. He studied the effect of chloroacetophenone on the development of embryos of Rana and Triturus employing different concentrations. Deuchar (1957) also studied the action of the same chemical on the embryos of Xenopus laevis and has recorded abnormalities mainly in the brain and the eye. In the present work ω-chloroacetophenone (CAP) commercially known as phenacyl chloride (ω—C6H5.CO.CH2Cl) was employed. The sample used was a B.D.H. product. Fresh fertilized hens' eggs brought from a local poultry farm were incubated at 37·5° C. for 16 to 18 hours to obtain definitive primitive-streak stages (range of length from 1·75 mm. to 2 mm.) or for about 22 hours to obtain head-process stages (average length of the head process alone 0·56 mm.).


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hyun Sook Hong ◽  
Suna Kim ◽  
Youngsook Son

Bone marrow stem cells, especially, endothelial precursor cells (EPC), mesenchymal stem cells (MSC) or hematopoietic stem cell (HSC) are expected as reparative cells for the repair of a variety of tissue damages such as stroke and myocardial infarction, even though their role in the repair is not demonstrated. This report was investigated to find a role of Substance-p (SP) as a reparative agent in the tissue repair requiring EPC and MSC. In order to examine EPC (EPC SP ) and MSC (MSC SP ) mobilized by SP, we injected SP intravenously for consecutive 2 days and saline was injected as a vehicle. At 3 post injection, peripheral blood (PB) was collected.To get mesenchymal stem cells or endothelial progenitor cells, MNCs were incubated in MSCGM or EGM-2 respectively for 10 days. Functional characteristics of the EPC SP were proven by the capacity to form endothelial tubule network in the matrigel in vitro and in the matrigel plug assay in vivo. In contrast, MSC SP did not form a tube-like structure but formed a pellet-structure on matrigel. However, when both cells were premixed before the matrigel assay, much longer and branched tubular network was formed, in which a-SMA expressing MSC SP were decorating outside of the endothelial tube, especially enriched at the bifurcating point. MSC SP may contribute and reinforce elaborate vascular network formation in vivo by working as pericyte-like cells. Thus, the EPC SP and MSC SP were labeled with PKH green and PKH red respectively and their tubular network was examined. Well organized tubular network was formed, which was covered by PKH green labeled cells and was decorated in a punctate pattern by PKH red labeled cells. In order to investigate the role of EPC SP and MSC SP specifically in vivo, rabbit EPC SP and MSC SP were transplanted to full thickness skin wound. The vessel of EPC SP -transplanted groups was UEA-lectin+, which was not covered with a-SMA+ pericytes but EPC SP + MSC SP -transplanted groups showed, in part, a-SMA+ pericyte-encircled UEA-lectin+ vessels. This proved the specific role of MSC SP as pericytes. From these data, we have postulated that the collaboration of MSC and EPC is essential for normal vessel structure and furthermore, accelerated wound healing as ischemia diseases, which can be stimulated through by SP injection.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 399 ◽  
Author(s):  
Catarina Chaves ◽  
Xavier Declèves ◽  
Meryam Taghi ◽  
Marie-Claude Menet ◽  
Joelle Lacombe ◽  
...  

The blood–brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed (1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and (2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.


1993 ◽  
Vol 265 (5) ◽  
pp. R1026-R1035 ◽  
Author(s):  
S. Zhong ◽  
Z. S. Huang ◽  
G. L. Gebber ◽  
S. M. Barman

We tested the hypothesis that brain stem circuits normally generate a 2- to 6-Hz oscillation in sympathetic nerve discharge (SND). Experiments were performed on baroreceptor-denervated decerebrate cats and urethan-anesthetized rats in which renal or splanchnic SND was recorded along with field potentials (population activity) from sites in the rostral ventrolateral medulla, medullary raphe, or medullary lateral tegmental field. Our major findings were as follows. 1) Population activity recorded from the three medullary regions contained a 2- to 6-Hz oscillation. 2) The 2- to 6-Hz oscillation in population activity recorded from some medullary sites was correlated to that in SND. Peak coherence in the 2- to 6-Hz band approached a value of 1 in some cases. 3) Whereas cervical spinal cord transection abolished or markedly reduced SND, the 2- to 6-Hz oscillation in medullary activity was essentially unchanged. These results support the view that the 2- to 6-Hz oscillation in SND can be generated in the brain stem of cats and rats.


1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.


Sign in / Sign up

Export Citation Format

Share Document