scholarly journals Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales

Author(s):  
C Sivaram ◽  
Arun Kenath ◽  
Avijeet Prasad

One of the biggest challenges in modern physics is how to unify gravity with quantum theory. There is an absence of a complete quantum theory of gravity, and conventionally it is thought that the effects of quantum gravity occur only at high energies (Planck scale). Here we suggest that certain novel quantum effects of gravity can become significant even at lower energies and could be tested at laboratory scales. We also suggest a few indirect effects of dark energy that can show up at laboratory scales. Using these ideas, we set observational constraints on radio recombination lines of the Rydberg atoms. We further suggest that high-precision measurements of Casimir effects for smaller plate separation could also show some manifestations of the presence of dark energy.

1973 ◽  
Vol 60 (10) ◽  
pp. 441-446 ◽  
Author(s):  
Victor F. Weisskopf

2013 ◽  
Vol 554 ◽  
pp. A60 ◽  
Author(s):  
A. Dupays ◽  
B. Lamine ◽  
A. Blanchard

2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545005
Author(s):  
Qing-Guo Huang

Gravitational waves can escape from the big bang and can be taken as a probe to the physics, in particular the inflation, in the early universe. Planck scale is a fundamental scale for quantum theory of gravity. Requiring the excursion distance of inflaton in the field space during inflation yields an upper bound on the tensor-to-scalar ratio. For example, [Formula: see text] for [Formula: see text]. In the typical inflationary scenario, we predict [Formula: see text] and [Formula: see text] which are consistent with Planck data released in 2015 quite well. Subtracting the contribution of thermal dust measured by Planck, BICEP2 data implies [Formula: see text] which is the tightest bound on the tensor-to-scalar ratio from current experiments.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.


2009 ◽  
Vol 18 (13) ◽  
pp. 2007-2022 ◽  
Author(s):  
SERGIO DEL CAMPO ◽  
J. R. VILLANUEVA

In this paper we study a quintessence cosmological model in which the dark energy component is considered to be the generalized Chaplygin gas and the curvature of the three-geometry is taken into account. Two parameters characterize this sort of fluid: ν and α. We use different astronomical data for restricting these parameters. It is shown that the constraint ν ≲ α agrees well enough with the astronomical observations.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


Sign in / Sign up

Export Citation Format

Share Document