evoked fields
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 7)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephen T. Foldes ◽  
Santosh Chandrasekaran ◽  
Joseph Camerone ◽  
James Lowe ◽  
Richard Ramdeo ◽  
...  

Devices interfacing with the brain through implantation in cortical or subcortical structures have great potential for restoration and rehabilitation in patients with sensory or motor dysfunction. Typical implantation surgeries are planned based on maps of brain activity generated from intact function. However, mapping brain activity for planning implantation surgeries is challenging in the target population due to abnormal residual function and, increasingly often, existing MRI-incompatible implanted hardware. Here, we present methods and results for mapping impaired somatosensory and motor function in an individual with paralysis and an existing brain–computer interface (BCI) device. Magnetoencephalography (MEG) was used to directly map the neural activity evoked during transcutaneous electrical stimulation and attempted movement of the impaired hand. Evoked fields were found to align with the expected anatomy and somatotopic organization. This approach may be valuable for guiding implants in other applications, such as cortical stimulation for pain and to improve implant targeting to help reduce the craniotomy size.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1748
Author(s):  
Dawei Shen ◽  
Claude Alain ◽  
Bernhard Ross

The presence of binaural low-level background noise has been shown to enhance the transient evoked N1 response at about 100 ms after sound onset. This increase in N1 amplitude is thought to reflect noise-mediated efferent feedback facilitation from the auditory cortex to lower auditory centers. To test this hypothesis, we recorded auditory-evoked fields using magnetoencephalography while participants were presented with binaural harmonic complex tones embedded in binaural or monaural background noise at signal-to-noise ratios of 25 dB (low noise) or 5 dB (higher noise). Half of the stimuli contained a gap in the middle of the sound. The source activities were measured in bilateral auditory cortices. The onset and gap N1 response increased with low binaural noise, but high binaural and low monaural noise did not affect the N1 amplitudes. P1 and P2 onset and gap responses were consistently attenuated by background noise, and noise level and binaural/monaural presentation showed distinct effects. Moreover, the evoked gamma synchronization was also reduced by background noise, and it showed a lateralized reduction for monaural noise. The effects of noise on the N1 amplitude follow a bell-shaped characteristic that could reflect an optimal representation of acoustic information for transient events embedded in noise.


2021 ◽  
Author(s):  
Robert A Seymour ◽  
Nicholas Alexander ◽  
Stephanie J Mellor ◽  
George C O'Neill ◽  
Tim M Tierney ◽  
...  

Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ~30 degrees rotation in a sitting position. While this represents a step-change over static MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up. In this proof-of-concept study, we sought to push the movement limits of OP-MEG even further. Using a 90 channel (45-sensor) whole-head OP-MEG system and concurrent motion capture, we recorded auditory evoked fields while participants were: (i) sitting still, (ii) standing up and still, and (iii) standing up and making large natural head movements continuously throughout the recording - maximum translation 120 cm, maximum rotation 198 degrees. Following pre-processing, movement artefacts were substantially reduced but not eliminated. However, upon utilisation of a beamformer, the M100 event-related field localised to primary auditory regions. Furthermore, the event-related fields from auditory cortex were remarkably consistent across the three conditions. These results suggest that a wide range of movement is possible with current OP-MEG systems. This in turn underscores the exciting potential of OP-MEG for recording neural activity during naturalistic paradigms that involve movement (e.g. navigation), and for scanning populations who are difficult to study with static MEG (e.g. young children).


2020 ◽  
Author(s):  
Ryoji Naganuma ◽  
Ichiro Yabe ◽  
Megumi Takeuchi ◽  
Kirari Morishita ◽  
Shingo Nakane ◽  
...  

AbstractStudies on evoked responses in Parkinson’s disease (PD) may be useful for elucidating the etiology and quantitative evaluation of PD. However, in previous studies, the association between evoked responses and detailed motor symptoms or cognitive functions has not been clear. This study investigated the characteristics of the visual (VEF), auditory (AEF), and somatosensory (SEF) evoked magnetic fields in patients with Parkinson’s disease (PD), and the correlations between evoked fields and the patient’s clinical characteristics, motor symptoms, and cognitive functions. Twenty patients with PD and 10 healthy controls (HCs) were recruited as participants. We recorded VEF, AEF, and SEF, collected clinical characteristics, performed physical examinations, and administered 10 cognitive tests. We investigated differences in the latencies of the evoked fields between patients with PD and HCs. We also evaluated the correlation of the latencies with motor symptoms and cognitive functioning. There were significant differences between the two groups in 6 of the cognitive tests, all of which suggested mild cognitive impairment in patients with PD. The latencies of the VEF N75m, P100m, N145m, AEF P50m, P100m, and SEF P60m components were greater in the patients with PD than in the HCs. The latencies mainly correlated with medication and motor symptoms, less so with cognitive tests, with some elements of the correlations remaining significant after Bonferroni correction. In conclusion, the latencies of the VEF, AEF, and SEF were greater in PD patients than in HCs and were mainly correlated with medication and motor symptoms rather than cognitive functioning. Findings from this study suggest that evoked fields may reflect basal ganglia functioning and are candidates for assessing motor symptoms or the therapeutic effects of medication in patients with PD.


2020 ◽  
Vol 26 ◽  
pp. 102205 ◽  
Author(s):  
Karim Mithani ◽  
Simeon M. Wong ◽  
Mirriam Mikhail ◽  
Haatef Pourmotabbed ◽  
Elizabeth Pang ◽  
...  

2019 ◽  
Author(s):  
Christoph Pfeiffer ◽  
Silvia Ruffieux ◽  
Lars Jönsson ◽  
Maxim L. Chukharkin ◽  
Alexei Kalaboukhov ◽  
...  

AbstractDue to their higher operating temperature, high-Tc superconducting quantum interference devices (SQUIDs) require less thermal insulation than the low-Tc sensors that are utilized in commercial magnetoen-cephalography (MEG) systems. As a result, they can be placed closer to the head, where neuromagnetic fields are higher and more focal, potentially leading to higher spatial resolution. The first such on-scalp MEG measurements using high-Tc SQUIDs have shown the potential of the technology. In order to be useful for neuroscience and clinical applications, however, multi-channel systems are required. Herein, we present a 7-channel on-scalp MEG system based on high-Tc SQUIDs. The YBCO SQUID magnetometers are arranged in a dense, head-aligned hexagonal array inside a single, liquid nitrogen-cooled cryostat. The spacing between the magnetometers and the head is adjustable down to 1 mm. The sensors are side-mounted on the cryostat that is mounted on an articulated armature for recordings on arbitrary head locations of a seated subject. We demonstrate white noise levels of 50-130 fT/Hz1/2 at 10 Hz, sensor-to-sensor crosstalk values of <0.6%, and single-fill operation times of 16 hours. We validate the system with MEG recordings of visual alpha modulation and auditory evoked fields. The system is thus useful for densely and sensitively sampling neuromagnetic fields over any ∼ 10 cm2 patch of the scalp surface over the course of a day.


2017 ◽  
Vol 117 (5) ◽  
pp. 1959-1968 ◽  
Author(s):  
Francesca Fardo ◽  
Mikkel C. Vinding ◽  
Micah Allen ◽  
Troels Staehelin Jensen ◽  
Nanna Brix Finnerup

Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0170166
Author(s):  
Izumi Yahata ◽  
Tetsuaki Kawase ◽  
Akitake Kanno ◽  
Hiroshi Hidaka ◽  
Shuichi Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document