pax2 expression
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Martin A. Estermann ◽  
Mylene M. Mariette ◽  
Julie L. M. Moreau ◽  
Alexander N. Combes ◽  
Craig A. Smith

During embryonic gonadal development, the supporting cell lineage is the first cell type to differentiate, giving rise to Sertoli cells in the testis and pre-granulosa cells in the ovary. These cells are thought to direct other gonadal cell lineages down the testis or ovarian pathways, including the germline. Recent research has shown that, in contrast to mouse, chicken gonadal supporting cells derive from a PAX2/OSR1/DMRT1/WNT4 positive mesenchymal cell population. These cells colonize the undifferentiated genital ridge during early gonadogenesis, around the time that germ cells migrate into the gonad. During the process of somatic gonadal sex differentiation, PAX2 expression is down-regulated in embryonic chicken gonads just prior to up-regulation of testis- and ovary-specific markers and prior to germ cell differentiation. Most research on avian gonadal development has focused on the chicken model, and related species from the Galloanserae clade. There is a lack of knowledge on gonadal sex differentiation in other avian lineages. Comparative analysis in birds is required to fully understand the mechanisms of avian sex determination and gonadal differentiation. Here we report the first comparative molecular characterization of gonadal supporting cell differentiation in birds from each of the three main clades, Galloanserae (chicken and quail), Neoaves (zebra finch) and Palaeognathe (emu). Our analysis reveals conservation of PAX2+ expression and a mesenchymal origin of supporting cells in each clade. Moreover, down-regulation of PAX2 expression precisely defines the onset of gonadal sex differentiation in each species. Altogether, these results indicate that gonadal morphogenesis is conserved among the major bird clades.


2021 ◽  
Author(s):  
M. Angela Nieto ◽  
Oscar Horacio Ocana ◽  
Juan Manuel Fons

The pronephros is the first renal structure in the embryo, arising after mesenchymal to epithelial transition (MET) of the intermediate mesoderm, where Pax2 induces epithelialization of the mesenchyme. Here we show that, in the early embryo, Snail1 directly represses Pax2 transcription maintaining the intermediate mesoderm in an undifferentiated state. Reciprocally, Pax2 directly represses Snail1 expression to induce MET upon receiving differentiation signals. We also show that BMP7 acts as one such signal by downregulating Snail1 and upregulating Pax2 expression. This, together with the Snail1/Pax2 reciprocal repression, establish a regulatory loop in a defined region along the anteroposterior axis, the bi-stability domain within the transition zone, where differentiation of the neural tube and the somites is known to occur. Thus, we show that the antagonism between Snail1 and Pax2 determines the epithelial/mesenchymal state during the differentiation of the intermediate mesoderm and propose that the bi-stability zone extends to the intermediate mesoderm, synchronizing the differentiation of tissues aligned along the mediolateral embryonic axis.


2021 ◽  
Vol 22 (3) ◽  
pp. 1279
Author(s):  
Evgeniya V. Pushchina ◽  
Eva I. Zharikova ◽  
Anatoly A. Varaksin

The considerable post-traumatic brain recovery in fishes makes them a useful model for studying the mechanisms that provide reparative neurogenesis, which is poorly represented in mammals. After a mechanical injury to the telencephalon in adult fish, lost neurons are actively replaced due to the proliferative activity of neuroepithelial cells and radial glia in the neurogenic periventricular zone. However, it is not enough clear which signaling mechanisms are involved in the activation of adult neural stem cells (aNSC) after the injury (reactive proliferation) and in the production of new neurons (regenerative neurogenesis) from progenitor cells (NPC). In juvenile Pacific salmon, the predominant type of NSCs in the telencephalon are neuroepithelial cells corresponding to embryonic NSCs. Expression of glutamine synthetase (GS), a NSC molecular marker, was detected in the neuroepithelial cells of the pallium and subpallium of juvenile chum salmon, Oncorhynchus keta. At 3 days after a traumatic brain injury (TBI) in juvenile chum salmon, the GS expression was detected in the radial glia corresponding to aNSC in the pallium and subpallium. The maximum density of distribution of GS+ radial glia was found in the dorsal pallial region. Hydrogen sulfide (H2S) is a proneurogenic factor that reduces oxidative stress and excitotoxicity effects, along with the increased GS production in the brain cells of juvenile chum salmon. In the fish brain, H2S producing by cystathionine β-synthase in neurogenic zones may be involved in maintaining the microenvironment that provides optimal conditions for the functioning of neurogenic niches during constitutive neurogenesis. After injury, H2S can determine cell survivability, providing a neuroprotective effect in the area of injury and reducing the process of glutamate excitotoxicity, acting as a signaling molecule involved in changing the neurogenic environment, which leads to the reactivation of neurogenic niches and cell regeneration programs. The results of studies on the control of the expression of regulatory Sonic Hedgehog genes (Shh) and the transcription factors Paired Box2 (Pax2) regulated by them are still insufficient. A comparative analysis of Pax2 expression in the telencephalon of intact chum salmon showed the presence of constitutive patterns of Pax2 expression in neurogenic areas and non-neurogenic parenchymal zones of the pallium and subpallium. After mechanical injury, the patterns of Pax2 expression changed, and the amount of Pax2+ decreased (p < 0.05) in lateral (Dl), medial (Dm) zones of the pallium, and the lateral zone (Vl) of the subpallium compared to the control. We believe that the decrease in the expression of Pax2 may be caused by the inhibitory effect of the Pax6 transcription factor, whose expression in the juvenile salmon brain increases upon injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaohe Yan ◽  
Pål Andresen ◽  
Xhevat Lumi ◽  
Qingshan Chen ◽  
Goran Petrovski

Purpose. To investigate the expression of progenitor cell markers (Sox2, Nestin, and Pax2) in idiopathic epiretinal membranes (iERMs) and nonidiopathic epiretinal membranes (niERMs) in relation to glial cell marker expression. Methods. ERMs were obtained from patients with iERMs and niERMs of different origins: proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and uveitis. The membranes were studied by flat-mount or sectional immunohistochemistry for expression of progenitor cell markers as well as glial (GFAP) and proliferation (Ki-67) markers. Results. Cells in the ERMs express strong GFAP, with strong Pax2 expression in the cell nuclei. Some of the GFAP-positive glial cells in all epiretinal membrane types colocalized with Sox2, Pax2, and Nestin. NiERMs are much more cellular than iERMs. Glial cells are more densely packed in all analyzed niERMs, whereas glial cells with long branches are found in the internal limiting membrane parts and the iERMs, which appear to form a local network by their processes. Conclusion. The GFAP-positive glial cells in ERMs are not pure glial cells, and some of them express progenitor cell markers, which indicate that these cells may have potential for self-renewal and differentiation into more glial or neuroglial type of cells.


2018 ◽  
Vol 25 (12) ◽  
pp. 981-991
Author(s):  
Emma Rewcastle ◽  
Anne Elin Varhaugvik ◽  
Einar Gudlaugsson ◽  
Anita Steinbakk ◽  
Ivar Skaland ◽  
...  

In order to avoid the consequences of over- and under-treatment of endometrial hyperplasia, diagnostic accuracy and progression risk assessment must be improved. The aim of this study was to assess whether PAX2 or PTEN expression could predict progression-free survival in endometrial intraepithelial neoplasia (EIN) and endometrial endometrioid carcinoma (EEC). Immunohistochemistry for detection of PAX2 and PTEN was performed on 348 endometrial samples; 75 proliferative endometrium (PE), 36 EIN and 237 EEC. Cases classified as PTEN null (1 or more glands negatively stained) were more prevalent in EEC than in PE and EIN (64% EEC vs 11% PE/EIN). A progressive decrease in PAX2 expression was observed from PE to EIN to EEC. Long-term clinical follow-up (6–310 months, median: 126) was available for 62 PE cases, all 36 EIN cases and 178 EEC cases. No patients with PE demonstrated progression to EIN or EEC. Progression of disease was observed in 10 (28%) EIN patients. These patients had significantly lower PAX2 expression than those that regressed (P = 0.005). Progression-free survival analysis revealed that EIN patients with a high-risk PAX2 expression score (H-score ≤75) had a higher probability of progression of disease in comparison to those with a low-risk score (H-score >75). PAX2 expression was not prognostic in EEC nor was PTEN status of prognostic value in either EIN or EEC. PAX2 expression analysis by means of H-score has prognostic potential for the identification of high-risk progression cases in EIN but needs to be validated in a larger cohort.


2018 ◽  
Vol 52 ◽  
pp. 135-142 ◽  
Author(s):  
Rosa Jahangiri ◽  
Fatemeh Mosaffa ◽  
Masoumeh Gharib ◽  
Amir Nader Emami Razavi ◽  
Afshin Abdirad ◽  
...  

2018 ◽  
Vol 314 (5) ◽  
pp. F832-F843 ◽  
Author(s):  
Abheepsa Mishra ◽  
Kamesh Ayasolla ◽  
Vinod Kumar ◽  
Xiqian Lan ◽  
Himanshu Vashistha ◽  
...  

The loss of podocyte (PD) molecular phenotype is an important feature of diabetic podocytopathy. We hypothesized that high glucose (HG) induces dedifferentiation in differentiated podocytes (DPDs) through alterations in the apolipoprotein (APO) L1-microRNA (miR) 193a axis. HG-induced DPD dedifferentiation manifested in the form of downregulation of Wilms’ tumor 1 (WT1) and upregulation of paired box 2 (PAX2) expression. WT1-silenced DPDs displayed enhanced expression of PAX2. Immunoprecipitation of DPD cellular lysates with anti-WT1 antibody revealed formation of WT1 repressor complexes containing Polycomb group proteins, enhancer of zeste homolog 2, menin, and DNA methyltransferase (DNMT1), whereas silencing of either WT1 or DNMT1 disrupted this complex with enhanced expression of PAX2. HG-induced DPD dedifferentiation was associated with a higher expression of miR193a, whereas inhibition of miR193a prevented DPD dedifferentiation in HG milieu. HG downregulated DPD expression of APOL1. miR193a-overexpressing DPDs displayed downregulation of APOL1 and enhanced expression of dedifferentiating markers; conversely, silencing of miR193a enhanced the expression of APOL1 and preserved DPD phenotype. Moreover, stably APOL1G0-overexpressing DPDs displayed the enhanced expression of WT1 but attenuated expression of miR193a; nonetheless, silencing of APOL1 reversed these effects. Since silencing of APOL1 enhanced miR193a expression as well as dedifferentiation in DPDs, it appears that downregulation of APOL1 contributed to dedifferentiation of DPDs through enhanced miR193a expression in HG milieu. Vitamin D receptor agonist downregulated miR193a, upregulated APOL1 expression, and prevented dedifferentiation of DPDs in HG milieu. These findings suggest that modulation of the APOL1-miR193a axis carries a potential to preserve DPD molecular phenotype in HG milieu.


Author(s):  
Nicholas Laughton

Wilms’ tumour is a pediatric tumour of the kidney that appears to be the result of abherrent embryonal renal development. The paired­box (PAX) gene family has previously been implicated in Wilm’s tumorogenesis. In this study, Nickel­Agarose Chromatin Enrichment (NACE) was used to identify genes whose expression is regulated by the ranscription cofactor Pax2. Of the genes identified by NACE, the extracellular signal metabolite WNT5A was chosen fro further study. The expression of WNT5A was measured in a set of tumour samples using quantitative real time polymerase chain reaction (qRT­PCR) and compared to a human fetal kidney control. Of the 38 samples tested, 76% showed significantly lower levelsof cytosolic messenger RNA (mRNA). This data, in conjunction with published data on Pax2 expression, suggests Pax2 inhibits the expression of WNT5A. When compared with histological reports for the tumours we examined, the expression data implies that WNT5A may have a role in regulation of tubule growth in the developing kidney


Sign in / Sign up

Export Citation Format

Share Document