epithelial state
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 14)

H-INDEX

3
(FIVE YEARS 2)

2021 ◽  
Vol 56 (23) ◽  
pp. 3222-3234.e6 ◽  
Author(s):  
Slawomir Blonski ◽  
Julien Aureille ◽  
Sara Badawi ◽  
Damian Zaremba ◽  
Lydia Pernet ◽  
...  

2021 ◽  
Author(s):  
Jesse Peterson ◽  
Kinga Balogh Sivars ◽  
Ambra Bianco ◽  
Katja Roeper

Toll-like receptors (TLRs) in mammalian systems are well characterised for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorso-ventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of cytoskeletal activity near epithelial junctions. Here we address the function of TLRs and the downstream key signal transduction component IRAK4 (interleukin-1 receptor associated kinase 4) in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling as revealed by p-IRAK4 and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight junctions and adherens junctions. These changes correlate with a loss of epithelial tension and changes in junctional actomyosin. Knock-down of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5135
Author(s):  
Ayalur Raghu Subbalakshmi ◽  
Sarthak Sahoo ◽  
Isabelle McMullen ◽  
Aaditya Narayan Saxena ◽  
Sudhanva Kalasapura Venugopal ◽  
...  

Epithelial–Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)—TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, and FOXC2—are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2 and GRHL1/2). Here, using mechanism-based mathematical modeling, we show that transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote a phenotypic shift toward a more epithelial state, an observation suggested by the negative correlation of KLF4 with EMT-TFs and with transcriptomic-based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating the EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at the epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with the patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.


2021 ◽  
Author(s):  
Ayalur Raghu Subbalakshmi ◽  
Sarthak Sahoo ◽  
Isabelle McMullen ◽  
Aaditya Narayan Saxena ◽  
Sudhanva Kalasapura Venugopal ◽  
...  

Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs) - TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, FOXC2 - are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2, GRHL1/2). Here, using mechanism-based mathematical modeling, we show that the transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote phenotypic shift toward a more epithelial state, an observation suggested by negative correlation of KLF4 with EMT-TFs and with transcriptomic based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at an epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.


2021 ◽  
Author(s):  
Aouad Patrik ◽  
Zhang Yueyun ◽  
Celine Stibolt ◽  
Mani Sendurai ◽  
Georgios Sflomos ◽  
...  

Estrogen receptor α-positive (ER+) breast cancers (BCs) represent more than 70% of all breast cancers and pose a particular clinical challenge because they recur up to decades after initial diagnosis and treatment. The mechanisms governing tumor cell dormancy and latent disease remain elusive due to a lack of adequate models. Here, we compare tumor progression of ER+ and triple-negative (TN) BC subtypes with a clinically relevant mouse intraductal xenografting approach (MIND). Both ER+ and TN BC cells disseminate already during the in situstage. However, TN disseminated tumor cells (DTCs) proliferate at the same rate as cells at the primary site and give rise to macro-metastases. ER+ DTCs have low proliferative indices, form only micro-metastases and lose epithelial characteristics. Expression of CDH1 is decreased whereas the mesenchymal marker VIM and the transcription factors, ZEB1/ZEB2, which control epithelial-mesenchymal plasticity (EMP) are increased. EMP is not detected earlier during ER+ BC development and not required for invasion or metastasis. In vivo, forced transition to the epithelial state through ectopic E-cadherin expression overcomes dormancy with increased growth of lung metastases. We conclude that EMP is essential for the generation of a dormant cell state and the development of latent disease. Targeting exit from EMP is of therapeutic potential.


2020 ◽  
Vol 8 (11) ◽  
pp. 1763
Author(s):  
Claudia Troncoso ◽  
Monica Pavez ◽  
Alvaro Cerda ◽  
Marcelo Oporto ◽  
Daniel Villarroel ◽  
...  

Helicobacter pylori is the main bacteria associated with gastroduodenal diseases. Recent studies have reported that gastric microbiota might be modified by the H. pylori colonization, favoring gastric lesions′ development. In Chile, the region of La Araucanía concentrates a high risk of gastric cancer associated with Helicobacter pylori colonization, rurality, poverty, and Mapuche ethnicity. Hence, we aimed to identify the culturable gastric microbiota and characterize its variability at different stages of epithelial injury, based on its H. pylori colonization in dyspeptic patients from this Chilean region. Microaerophilic bacteria strains were isolated from antrum biopsies of 155 dyspeptic patients′ biopsies and identified using MALDI-TOF MS or 16sRNA gene sequencing for non-pylori species identification, and UreC gene amplification for H. pylori confirmation. We found 48 species from 18 families, mainly belonging to Neisseriaceae (21.3%), Streptococcaceae (20.0%), Actynomicetaceae (9.0%), Enterobacteriaceae, and Lactobacillaceae (4.5%); however, Streptococcaceae and Actinomycetaceae families showed a significant reduction in samples infected with H. pylori, along with a considerably lower diversity of species. Our results revealed a microbiota modification due to H. pylori colonization associated with the gastric epithelial state, suggesting a potential microbiota role for developing and progressing gastric diseases.


Oncogene ◽  
2020 ◽  
Vol 39 (11) ◽  
pp. 2377-2390 ◽  
Author(s):  
Chao-Ju Chen ◽  
Chih-Jen Yang ◽  
Sheau-Fang Yang ◽  
Ming-Shyang Huang ◽  
Yu-Peng Liu

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jennifer A. Fraser ◽  
Joseph E. Sutton ◽  
Saba Tazayoni ◽  
Isla Bruce ◽  
Amy V. Poole

AbstractNeuroendocrine prostate cancer (NEPC) is thought to arise as prostate adenocarcinoma cells transdifferentiate into neuroendocrine (NE) cells to escape potent anti-androgen therapies however, the exact molecular events accompanying NE transdifferentiation and their plasticity remain poorly defined. Cell fate regulator ASCL1/hASH1’s expression was markedly induced in androgen deprived (AD) LNCaP cells and prominent nuclear localisation accompanied acquisition of the NE-like morphology and expression of NE markers (NSE). By contrast, androgen-insensitive PC3 and DU145 cells displayed clear nuclear hASH1 localisation under control conditions that was unchanged by AD, suggesting AR signalling negatively regulated hASH1 expression and localisation. Synthetic androgen (R1881) prevented NE transdifferentiation of AD LNCaP cells and markedly suppressed expression of key regulators of lineage commitment and neurogenesis (REST and ASCL1/hASH1). Post-AD, NE LNCaP cells rapidly lost NE-like morphology following R1881 treatment, yet ASCL1/hASH1 expression was resistant to R1881 treatment and hASH1 nuclear localisation remained evident in apparently dedifferentiated LNCaP cells. Consequently, NE cells may not fully revert to an epithelial state and retain key NE-like features, suggesting a “hybrid” phenotype. This could fuel greater NE transdifferentiation, therapeutic resistance and NEPC evolution upon subsequent androgen deprivation. Such knowledge could facilitate CRPC tumour stratification and identify targets for more effective NEPC management.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 858 ◽  
Author(s):  
Burcu Sengez ◽  
Ilkin Aygün ◽  
Huma Shehwana ◽  
Neslihan Toyran ◽  
Sanem Tercan Avci ◽  
...  

The epithelial to mesenchymal transition (EMT) and the mesenchymal to epithelial transition (MET) are two critical biological processes that are involved in both physiological events such as embryogenesis and development and also pathological events such as tumorigenesis. They present with dramatic changes in cellular morphology and gene expression exhibiting acute changes in E-cadherin expression. Despite the comprehensive understanding of EMT, the regulation of MET is far from being understood. To find novel regulators of MET, we hypothesized that such factors would correlate with Cdh1 expression. Bioinformatics examination of several expression profiles suggested Elf3 as a strong candidate. Depletion of Elf3 at the onset of MET severely impaired the progression to the epithelial state. This MET defect was explained, in part, by the absence of E-cadherin at the plasma membrane. Moreover, during MET, ELF3 interacts with the Grhl3 promoter and activates its expression. Our findings present novel insights into the regulation of MET and reveal ELF3 as an indispensable guardian of the epithelial state. A better understanding of MET will, eventually, lead to better management of metastatic cancers.


Sign in / Sign up

Export Citation Format

Share Document