cytoplasmic complex
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Pratick Khara ◽  
Liqiang Song ◽  
Peter J. Christie ◽  
Bo Hu

ABSTRACTBacterial conjugation systems are members of the type IV secretion system (T4SS) superfamily. T4SSs can be classified as ‘minimized’ or ‘expanded’ based on whether they are composed of a core set of signature subunits or additional system-specific components. Prototypical ‘minimized’ systems mediating Agrobacterium tumefaciens T-DNA transfer and pKM101 and R388 plasmid transfer are built from subunits generically named VirB1-VirB11 and VirD4. We visualized the pKM101-encoded T4SS in the native cellular context by in situ cryoelectron tomography (CryoET). The T4SSpKM101 is composed of an outer membrane core complex (OMCC) connected by a thin stalk to an inner membrane complex (IMC). The OMCC exhibits 14-fold symmetry and resembles that of the T4SSR388 analyzed previously by single-particle electron microscopy. The IMC is highly symmetrical and exhibits 6-fold symmetry. It is dominated by a hexameric collar in the periplasm and a cytoplasmic complex composed of a hexamer of dimers of the VirB4-like TraB ATPase. The IMC closely resembles equivalent regions of three ‘expanded’ T4SSs previously visualized by in situ CryoET, but differs strikingly from the IMC of the purified T4SSR388 whose cytoplasmic complex instead presents as two side-by-side VirB4 hexamers. Analyses of mutant machines lacking each of the three ATPases required for T4SSpKM101 function supplied evidence that TraBB4 as well as VirB11-like TraG contribute to distinct stages of machine assembly. We propose that the VirB4-like ATPases, configured as hexamers-of-dimers at the T4SS entrance, orchestrate IMC assembly and recruitment of the spatially-dynamic VirB11 and VirD4 ATPases to activate the T4SS for substrate transfer.SIGNIFICANCEBacterial type IV secretion systems (T4SSs) play central roles in antibiotic resistance spread and virulence. By cryoelectron tomography (CryoET), we solved the structure of the plasmid pKM101-encoded T4SS in the native context of the bacterial cell envelope. The inner membrane complex (IMC) of the in situ T4SS differs remarkably from that of a closely-related T4SS analyzed in vitro by single particle electron microscopy. Our findings underscore the importance of comparative in vitro and in vivo analyses of the T4SS nanomachines, and support a unified model in which the signature VirB4 ATPases of the T4SS superfamily function as a central hexamer of dimers to regulate early-stage machine biogenesis and substrate entry passage through the T4SS. The VirB4 ATPases are therefore excellent targets for development of intervention strategies aimed at suppressing the action of T4SS nanomachines.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009667
Author(s):  
Yin Ho Vong ◽  
Lavanya Sivashanmugam ◽  
Rebecca Leech ◽  
Andreas Zaucker ◽  
Alex Jones ◽  
...  

The ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. We show that loss of maternal Igf2bp3 function results in translational de-regulation of a Nodal reporter during the mid-blastula transition. Furthermore, maternal igf2bp3 mutants exhibit reduced expression of germplasm transcripts, defects in chemokine guidance, abnormal PGC behavior and germ cell death. Consistently, adult igf2bp3 mutants show a strong male bias. Our findings suggest that Igf2bp3 is essential for normal embryonic and germline development, and acts as a key regulator of sexual development.


2021 ◽  
Author(s):  
Pratick Khara ◽  
Peter J. Christie ◽  
Bo Hu

Bacterial conjugation systems are members of the type IV secretion system (T4SS) superfamily. T4SSs can be classified as ‘minimized’ or ‘expanded’ based on whether assembly requires only a core set of signature subunits or additional system-specific components. The prototypical ‘minimized’ systems mediating Agrobacterium tumefaciens T-DNA transfer and conjugative transfer of plasmids pKM101 and R388 are built from 12 subunits generically named VirB1-VirB11 and VirD4. In this study, we visualized the pKM101-encoded T4SS in the native context of the bacterial cell envelope by in situ cryoelectron tomography (CryoET). The T4SSpKM101 is composed of an outer membrane core complex (OMCC) connected by a thin stalk to an inner membrane complex (IMC). The OMCCexhibits 14-fold symmetry and resembles that of the T4SSR388, a large substructure of which was previously purified and analyzed by negative-stain electron microscopy (nsEM). The IMC of the in situ T4SSpKM101 machine is highly symmetrical and exhibits 6-fold symmetry, dominated by a hexameric collar in the periplasm and a cytoplasmic complex composed of a hexamer of dimers of the VirB4-like TraB ATPase. The IMCclosely resembles equivalent regions of three ‘expanded’ T4SSs previously visualized by in situ CryoET, but strikingly differs from the IMC of the purified T4SSR388 whose cytoplasmic complex instead presents as two side-by-side VirB4 hexamers.  Together, our findings support a unified architectural model for all T4SSs assembled in vivo regardless of their classification as ‘minimized’ or ‘expanded’: the signature VirB4-like ATPases invariably are arranged as central hexamers of dimers at the entrances to the T4SS channels.


2020 ◽  
Author(s):  
Yin Ho Vong ◽  
Lavanya Sivashanmugam ◽  
Andreas Zaucker ◽  
Alex Jones ◽  
Karuna Sampath

AbstractThe ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. Maternal mutants affecting igf2bp3 exhibit abnormal PGCs and adult igf2bp3 mutants show male biased sex ratios. Therefore, Igf2bp3 is required for normal embryonic and germline development.


Rheumatology ◽  
2019 ◽  
Vol 59 (5) ◽  
pp. 1026-1030 ◽  
Author(s):  
Zoe Betteridge ◽  
Hector Chinoy ◽  
Jiri Vencovsky ◽  
John Winer ◽  
Kiran Putchakayala ◽  
...  

Abstract Objectives To describe the prevalence and clinical associations of autoantibodies to a novel autoantigen, eukaryotic initiation factor 3 (eIF3), detected in idiopathic inflammatory myositis. Methods Sera or plasma from 678 PM patients were analysed for autoantigen specificity by radio-labelled protein immunoprecipitation (IPP). Samples immunoprecipitating the same novel autoantigens were further analysed by indirect immunofluorescence and IPP using pre-depleted cell extracts. The autoantigen was identified through a combination of IPP and MALDI-TOF mass spectrometry, and confirmed using commercial antibodies and IPP-western blots. Additional samples from patients with DM (668), DM-overlap (80), PM-overlap (191), systemic sclerosis (150), systemic lupus erythematosus (200), Sjogren’s syndrome (40), rheumatoid arthritis (50) and healthy controls (150) were serotyped by IPP as disease or healthy controls. Results IPP revealed a novel pattern in three PM patients (0.44%) that was not found in disease-specific or healthy control sera. Indirect immunofluorescence demonstrated a fine cytoplasmic speckled pattern for all positive patients. Mass spectrometry analysis of the protein complex identified the target autoantigen as eIF3, a cytoplasmic complex with a role in the initiation of translation. Findings were confirmed by IPP-Western blotting. The three anti-eIF3-positive patients had no history of malignancy or interstitial lung disease, and had a favourable response to treatment. Conclusion We report a novel autoantibody in 0.44% of PM patients directed against a cytoplasmic complex of proteins identified as eIF3. Although our findings need further confirmation, anti-eIF3 appears to correlate with a good prognosis and a favourable response to treatment.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sangeetha Mahadevan ◽  
Varsha Sathappan ◽  
Budi Utama ◽  
Isabel Lorenzo ◽  
Khalied Kaskar ◽  
...  

Abstract Mammalian parental genomes contribute differently to early embryonic development. Before activation of the zygotic genome, the maternal genome provides all transcripts and proteins required for the transition from a highly specialized oocyte to a pluripotent embryo. Depletion of these maternally-encoded transcripts frequently results in failure of preimplantation embryonic development, but their functions in this process are incompletely understood. We found that female mice lacking NLRP2 are subfertile because of early embryonic loss and the production of fewer offspring that have a wide array of developmental phenotypes and abnormal DNA methylation at imprinted loci. By demonstrating that NLRP2 is a member of the subcortical maternal complex (SCMC), an essential cytoplasmic complex in oocytes and preimplantation embryos with poorly understood function, we identified imprinted postzygotic DNA methylation maintenance, likely by directing subcellular localization of proteins involved in this process, such as DNMT1, as a new crucial role of the SCMC for mammalian reproduction.


2015 ◽  
Vol 112 (4) ◽  
pp. 1047-1052 ◽  
Author(s):  
Bo Hu ◽  
Dustin R. Morado ◽  
William Margolin ◽  
John R. Rohde ◽  
Olivia Arizmendi ◽  
...  

Bacterial type III secretion machines are widely used to inject virulence proteins into eukaryotic host cells. These secretion machines are evolutionarily related to bacterial flagella and consist of a large cytoplasmic complex, a transmembrane basal body, and an extracellular needle. The cytoplasmic complex forms a sorting platform essential for effector selection and needle assembly, but it remains largely uncharacterized. Here we use high-throughput cryoelectron tomography (cryo-ET) to visualize intact machines in a virulentShigella flexneristrain genetically modified to produce minicells capable of interaction with host cells. A high-resolution in situ structure of the intact machine determined by subtomogram averaging reveals the cytoplasmic sorting platform, which consists of a central hub and six spokes, with a pod-like structure at the terminus of each spoke. Molecular modeling of wild-type and mutant machines allowed us to propose a model of the sorting platform in which the hub consists mainly of a hexamer of the Spa47 ATPase, whereas the MxiN protein comprises the spokes and the Spa33 protein forms the pods. Multiple contacts among those components are essential to align the Spa47 ATPase with the central channel of the MxiA protein export gate to form a unique nanomachine. The molecular architecture of theShigellatype III secretion machine and its sorting platform provide the structural foundation for further dissecting the mechanisms underlying type III secretion and pathogenesis and also highlight the major structural distinctions from bacterial flagella.


FEBS Journal ◽  
2013 ◽  
Vol 280 (23) ◽  
pp. 6141-6149 ◽  
Author(s):  
Ankan Banerjee ◽  
Tomasz Neiner ◽  
Patrick Tripp ◽  
Sonja-Verena Albers

Sign in / Sign up

Export Citation Format

Share Document