gwas catalog
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 29)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
pp. gr.275723.121
Author(s):  
Jill E Moore ◽  
Xiao-Ou Zhang ◽  
Shaimae I Elhajjajy ◽  
Kaili Fan ◽  
Henry E Pratt ◽  
...  

Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated, nor do they contain information on cell type-specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks were primarily proximal to GENCODE-annotated TSSs and were concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3' ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations were supported by epigenomic and other transcriptomic datasets. To demonstrate the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide association studies (GWAS) catalog and identified new candidate GWAS genes. Overall, our work demonstrates the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.


2021 ◽  
Author(s):  
Derek W Linskey ◽  
David C Linskey ◽  
Howard L McLeod ◽  
Jasmine A Luzum

The primary research approach in pharmacogenetics has been candidate gene association studies (CGAS), but pharmacogenomic genome-wide association studies (GWAS) are becoming more common. We are now at a critical juncture when the results of those two research approaches, CGAS and GWAS, can be compared in pharmacogenetics. We analyzed publicly available databases of pharmacogenetic CGAS and GWAS (i.e., the Pharmacogenomics Knowledgebase [PharmGKB®] and the NHGRI-EBI GWAS catalog) and the vast majority of variants (98%) and genes (94%) discovered in pharmacogenomic GWAS were novel (i.e., not previously studied CGAS). Therefore, pharmacogenetic researchers are not selecting the right candidate genes in the vast majority of CGAS, highlighting a need to shift pharmacogenetic research efforts from CGAS to GWAS.


2021 ◽  
Author(s):  
Sara Victoria Good ◽  
Ryan Gotesman ◽  
Ilya Kisselev ◽  
Andrew D. Paterson

Abstract GWAS have identified thousands of loci associated with human complex diseases and traits. How these loci are distributed through the genome has not been systematically evaluated. We hypothesised that the location of GWAS loci differ between ancestral linkage groups (ALGs) related to the paralogy and function of genes. We used data from the NHGRI-EBI GWAS catalog to determine whether the density of GWAS loci relative to HapMap variants in each ALG differed, and whether ALG’s were enriched for experimental factor ontological (EFO) terms assigned to the GWAS traits. In a gene-level analyses we explored the characteristics of genes linked to GWAS loci and those mapping to the ALG’s. We find that GWAS loci were enriched or deficient in 9 and 7 of the 17 ALG’s respectively, while there was no difference in the number of GWAS loci in regions of the human genome unassigned to an ALG. All but 2 ALG’s were significantly enriched or deficient for one or more EFO terms. Lastly, we find that genes assigned to an ALG are under higher levels of selective constraint, have longer coding sequences and higher median expression in the tissue of highest expression than genes not mapping to an ALG. On the other hand, genes associated with GWAS loci have longer genomic length and exhibit higher levels of selective constraint relative to non-GWAS genes.Collectively, this suggests that understanding the location and ancestral origins of GWAS signals may be informative for the development of tools for variant prioritization and interpretation.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1349
Author(s):  
Yixiao Zeng ◽  
Kaiqiong Zhao ◽  
Kathleen Oros Oros Klein ◽  
Xiaojian Shao ◽  
Marvin J. Fritzler ◽  
...  

High levels of anti-citrullinated protein antibodies (ACPA) are often observed prior to a diagnosis of rheumatoid arthritis (RA). We undertook a replication study to confirm CpG sites showing evidence of differential methylation in subjects positive vs. negative for ACPA, in a new subset of 112 individuals sampled from the population cohort and biobank CARTaGENE in Quebec, Canada. Targeted custom capture bisulfite sequencing was conducted at approximately 5.3 million CpGs located in regulatory or hypomethylated regions from whole blood; library and protocol improvements had been instituted between the original and this replication study, enabling better coverage and additional identification of differentially methylated regions (DMRs). Using binomial regression models, we identified 19,472 ACPA-associated differentially methylated cytosines (DMCs), of which 430 overlapped with the 1909 DMCs reported by the original study; 814 DMRs of relevance were clustered by grouping adjacent DMCs into regions. Furthermore, we performed an additional integrative analysis by looking at the DMRs that overlap with RA related loci published in the GWAS Catalog, and protein-coding genes associated with these DMRs were enriched in the biological process of cell adhesion and involved in immune-related pathways.


2021 ◽  
Author(s):  
Irene Novo ◽  
Eugenio López-Cortegano ◽  
Armando Caballero

AbstractRecent studies have shown the ubiquity of pleiotropy for variants affecting human complex traits. These studies also show that rare variants tend to be less pleiotropic than common ones, suggesting that purifying natural selection acts against highly pleiotropic variants of large effect. Here, we investigate the mean frequency, effect size and recombination rate associated with pleiotropic variants, and focus particularly on whether highly pleiotropic variants are enriched in regions with putative strong background selection. We evaluate variants for 41 human traits using data from the NHGRI-EBI GWAS Catalog, as well as data from other three studies. Our results show that variants involving a higher degree of pleiotropy tend to be more common, have larger mean effect sizes, and contribute more to heritability than variants with a lower degree of pleiotropy. This is consistent with the fact that variants of large effect and frequency are more likely detected by GWAS. Using data from four different studies, we also show that more pleiotropic variants are enriched in genome regions with stronger background selection than less pleiotropic variants, suggesting that highly pleiotropic variants are subjected to strong purifying selection. From the above results, we hypothesized that a number of highly pleiotropic variants of low effect/frequency may pass undetected by GWAS.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emily A. King ◽  
Fengjiao Dunbar ◽  
Justin Wade Davis ◽  
Jacob F. Degner

Abstract Background Colocalization is a statistical method used in genetics to determine whether the same variant is causal for multiple phenotypes, for example, complex traits and gene expression. It provides stronger mechanistic evidence than shared significance, which can be produced through separate causal variants in linkage disequilibrium. Current colocalization methods require full summary statistics for both traits, limiting their use with the majority of reported GWAS associations (e.g. GWAS Catalog). We propose a new approximation to the popular coloc method that can be applied when limited summary statistics are available. Our method (POint EstiMation of Colocalization, POEMColoc) imputes missing summary statistics for one or both traits using LD structure in a reference panel, and performs colocalization using the imputed summary statistics. Results We evaluate the performance of POEMColoc using real (UK Biobank phenotypes and GTEx eQTL) and simulated datasets. We show good correlation between posterior probabilities of colocalization computed from imputed and observed datasets and similar accuracy in simulation. We evaluate scenarios that might reduce performance and show that multiple independent causal variants in a region and imputation from a limited subset of typed variants have a larger effect while mismatched ancestry in the reference panel has a modest effect. Further, we find that POEMColoc is a better approximation of coloc when the imputed association statistics are from a well powered study (e.g., relatively larger sample size or effect size). Applying POEMColoc to estimate colocalization of GWAS Catalog entries and GTEx eQTL, we find evidence for colocalization of 150,000 trait-gene-tissue triplets. Conclusions We find that colocalization analysis performed with full summary statistics can be closely approximated when only the summary statistics of the top SNP are available for one or both traits. When applied to the full GWAS Catalog and GTEx eQTL, we find that colocalized trait-gene pairs are enriched in tissues relevant to disease etiology and for matches to approved drug mechanisms. POEMColoc R package is available at https://github.com/AbbVie-ComputationalGenomics/POEMColoc.


2021 ◽  
Author(s):  
Jill E Moore ◽  
Xiao-Ou Zhang ◽  
Shaimae I Elhajjajy ◽  
Kaili Fan ◽  
Fairlie Reese ◽  
...  

Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated nor do they contain information on cell type-specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks were primarily proximal to GENCODE-annotated TSSs and were concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3' ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations were supported by epigenomic and other transcriptomic datasets. To demonstrate the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI GWAS catalog and identified new candidate GWAS genes. Overall, our work demonstrates the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.


2021 ◽  
Author(s):  
Irene Novo ◽  
Eugenio López-Cortegano ◽  
Armando Caballero

Abstract Recent studies have shown the ubiquity of pleiotropy for variants affecting human complex traits. These studies also show that rare variants tend to be less pleiotropic than common ones, suggesting that purifying natural selection acts against highly pleiotropic variants of large effect. Here we investigate the mean frequency, effect size and recombination rate associated with pleiotropic variants, and focus particularly on whether highly pleiotropic variants are enriched in regions with putative strong background selection. We evaluate variants for 41 human traits using data from the NHGRI-EBI GWAS Catalog, as well as data from other three studies. Our results show that variants involving a higher degree of pleiotropy tend to be more common, have larger mean effect sizes, and contribute more to heritability than variants with a lower degree of pleiotropy. Using data from four different studies, we show that more pleiotropic variants are enriched in genome regions with stronger background selection than less pleiotropic variants. Thus, we conclude that even though highly pleiotropic variants found so far have larger average effect sizes and frequencies than less pleiotropic ones, they are likely to be subjected to stronger background selection.


2020 ◽  
Author(s):  
Xiao Chang ◽  
Yun Li ◽  
Kenny Nguyen ◽  
Huiqi Qu ◽  
Yichuan Liu ◽  
...  

AbstractWe analyzed GWAS results released by COVID-19 Host Genetics Initiative, UK biobank and GWAS Catalog to explore the genetic overlap between COVID-19 and a broad spectrum of traits and diseases. We validate previously reported medical conditions and risk factors based on epidemiological studies, including but not limited to hypertension, type 2 diabetes and obesity. We also report novel traits associated with COVID-19, which have not been previously reported from epidemiological data, such as opioid use and educational attainment. Taken together, this study extends our understanding of the genetic basis of COVID-19, and provides target traits for further epidemiological studies.


2020 ◽  
Vol 10 (10) ◽  
pp. 692
Author(s):  
Jinhee Lee ◽  
Min Ji Son ◽  
Chei Yun Son ◽  
Gwang Hun Jeong ◽  
Keum Hwa Lee ◽  
...  

This study aimed to verify noteworthy findings between genetic risk factors and autism spectrum disorder (ASD) by employing the false positive report probability (FPRP) and the Bayesian false-discovery probability (BFDP). PubMed and the Genome-Wide Association Studies (GWAS) catalog were searched from inception to 1 August, 2019. We included meta-analyses on genetic factors of ASD of any study design. Overall, twenty-seven meta-analyses articles from literature searches, and four manually added articles from the GWAS catalog were re-analyzed. This showed that five of 31 comparisons for meta-analyses of observational studies, 40 out of 203 comparisons for the GWAS meta-analyses, and 18 out of 20 comparisons for the GWAS catalog, respectively, had noteworthy estimations under both Bayesian approaches. In this study, we found noteworthy genetic comparisons highly related to an increased risk of ASD. Multiple genetic comparisons were shown to be associated with ASD risk; however, genuine associations should be carefully verified and understood.


Sign in / Sign up

Export Citation Format

Share Document