scholarly journals Failure Analysis of TEVG’s I: Overcoming the Initial Stages of Blood Material Interaction and Stabilization of the Immune Response

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3140
Author(s):  
Maria A. Rodriguez-Soto ◽  
Natalia Suarez Vargas ◽  
Alejandra Riveros ◽  
Carolina Muñoz Camargo ◽  
Juan C. Cruz ◽  
...  

Vascular grafts (VG) are medical devices intended to replace the function of a diseased vessel. Current approaches use non-biodegradable materials that struggle to maintain patency under complex hemodynamic conditions. Even with the current advances in tissue engineering and regenerative medicine with the tissue engineered vascular grafts (TEVGs), the cellular response is not yet close to mimicking the biological function of native vessels, and the understanding of the interactions between cells from the blood and the vascular wall with the material in operative conditions is much needed. These interactions change over time after the implantation of the graft. Here we aim to analyze the current knowledge in bio-molecular interactions between blood components, cells and materials that lead either to an early failure or to the stabilization of the vascular graft before the wall regeneration begins.

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Enric Casanova-Batlle ◽  
Antonio J. Guerra ◽  
Joaquim Ciurana

Bioresorbable cardiovascular applications are increasing in demand as fixed medical devices cause episodes of late restenosis. The autologous treatment is, so far, the gold standard for vascular grafts due to the similarities to the replaced tissue. Thus, the possibility of customizing each application to its end user is ideal for treating pathologies within a dynamic system that receives constant stimuli, such as the cardiovascular system. Direct Ink Writing (DIW) is increasingly utilized for biomedical purposes because it can create composite bioinks by combining polymers and materials from other domains to create DIW-printable materials that provide characteristics of interest, such as anticoagulation, mechanical resistance, or radiopacity. In addition, bioinks can be tailored to encounter the optimal rheological properties for the DIW purpose. This review delves into a novel emerging field of cardiovascular medical applications, where this technology is applied in the tubular 3D printing approach. Cardiovascular stents and vascular grafts manufactured with this new technology are reviewed. The advantages and limitations of blending inks with cells, composite materials, or drugs are highlighted. Furthermore, the printing parameters and the different possibilities of designing these medical applications have been explored.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1613
Author(s):  
Fang Huang ◽  
Yu-Fang Hsieh ◽  
Xuefeng Qiu ◽  
Shyam Patel ◽  
Song Li

The remodeling of vascular grafts is critical for blood vessel regeneration. However, most scaffold materials have limited cell infiltration. In this study, we designed and fabricated a scaffold that incorporates a fast-degrading polymer polydioxanone (PDO) into the microfibrous structure by means of electrospinning technology. Blending PDO with base polymer decreases the density of electrospun microfibers yet did not compromise the mechanical and structural properties of the scaffold, and effectively enhanced cell infiltration. We then used this technique to fabricate a tubular scaffold with heparin conjugated to the surface to suppress thrombosis, and the construct was implanted into the carotid artery as a vascular graft in animal studies. This graft significantly promoted cell infiltration, and the biochemical cues such as immobilized stromal cell-derived factor-1α further enhanced cell recruitment and the long-term patency of the grafts. This work provides an approach to optimize the microfeatures of vascular grafts, and will have broad applications in scaffold design and fabrication for regenerative engineering.


2013 ◽  
Vol 93 (4) ◽  
pp. 1743-1802 ◽  
Author(s):  
Jean-Sébastien Silvestre ◽  
David M. Smadja ◽  
Bernard I. Lévy

After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Michael Schnoor ◽  
Pilar Alcaide ◽  
Mathieu-Benoit Voisin ◽  
Jaap D. van Buul

Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.


2019 ◽  
Vol 119 (04) ◽  
pp. 534-541 ◽  
Author(s):  
Selin Gencer ◽  
Emiel van der Vorst ◽  
Maria Aslani ◽  
Christian Weber ◽  
Yvonne Döring ◽  
...  

AbstractInflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


2015 ◽  
Vol 3 (28) ◽  
pp. 5760-5768 ◽  
Author(s):  
Tong Wu ◽  
Bojie Jiang ◽  
Yuanfei Wang ◽  
Anlin Yin ◽  
Chen Huang ◽  
...  

(P(LLA-CL)–COL–CS) composite vascular grafts could effectively improve patency rate, promote tissue regeneration, and enhance gene expression.


2008 ◽  
Vol 22 (S2) ◽  
pp. 605-605
Author(s):  
Mauricio Antonio Contreras ◽  
Mathew Douglas Phaneuf ◽  
Shengqian Wu ◽  
Martin J. Bide ◽  
Frank W. LoGerfo

2005 ◽  
Vol 2005 (3) ◽  
pp. 121-130 ◽  
Author(s):  
Anna Maria Witkowska

A soluble IL-2 receptor (sIL-2R) is a circulating form of a membrane receptor localized on lymphoid and some cancer cells. The biological function of sIL-2R has not been completely understood. Substantially, it seems to reflect T-lymphocyte activation in diseases of different pathology. Moreover, the soluble receptor has been considered, at least in part, responsible for unsuccessful immunotherapy with IL-2 in cancers. Several lines of evidence indicate sIL-2R measurements to be useful in determining disease progress and prognosis. This review summarizes current knowledge on the sIL-2R behavior in RA and solid cancers of varied etiology.


2018 ◽  
Vol 38 (6) ◽  
pp. 525-535 ◽  
Author(s):  
Ipek Yalcin Enis ◽  
Telem Gok Sadikoglu ◽  
Jana Horakova ◽  
David Lukas

AbstractVascular grafts provide promising scaffolds for patients recuperating from cardiovascular diseases. Since it is necessary to mimic the native vessel in order to overcome the limitations of currently employed synthetic prostheses, researchers are tending to focus on the design of electrospun biodegradable multi-layer scaffolds which involves varying either the polymer type or constructional properties in each layer which, in turn, reveals the importance of layer interactions and their composite effect on the final multi-layer graft. This study describes the fabrication of biodegradable single-layer tubular scaffolds from polycaprolactone and poly(L-lactide)caprolactone polymers composed of either randomly distributed or, preferably, radially oriented fibers. Subsequently, bi-layer scaffolds were fabricated with a randomly distributed inner layer and a radially oriented outer layer from various polymer couple variations. The study focuses on vascular graft production technology including its morphology and mechanical properties. The post-morphologies of single-layer and bi-layer tubular scaffolds designed for vascular grafts were investigated as a continuation of a previously performed analysis of their mechanical properties. The results indicate that the mechanical properties of the final bi-layer grafts were principally influenced by the radially oriented outer layers acting as thetunica mediaof the native vessels when the appropriate polymer couples were chosen for the sub-layers.


Sign in / Sign up

Export Citation Format

Share Document