grk2 expression
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 953
Author(s):  
María González-Amor ◽  
Rocío Vila-Bedmar ◽  
Raquel Rodrigues-Díez ◽  
Rosa Moreno-Carriles ◽  
Alba C. Arcones ◽  
...  

Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms. Using mice hemizygous for GRK2 in the myeloid lineage (LysM-GRK2+/−), we found that GRK2 deficiency in myeloid cells allows animals to preserve the endothelium-dependent acetylcholine or insulin-induced relaxation, which is otherwise impaired by PVAT, in arteries of animals fed a high fat diet (HFD). Downregulation of GRK2 in myeloid cells attenuates HFD-dependent infiltration of macrophages and T lymphocytes in PVAT, as well as the induction of tumor necrosis factor-α (TNFα) and NADPH oxidase (Nox)1 expression, whereas blocking TNFα or Nox pathways by pharmacological means can rescue the impaired vasodilator responses to insulin in arteries with PVAT from HFD-fed animals. Our results suggest that myeloid GRK2 could be a potential therapeutic target in the development of endothelial dysfunction induced by PVAT in the context of obesity.


2020 ◽  
Vol 132 ◽  
pp. 106746
Author(s):  
Maria Rosaria Rusciano ◽  
Elena De Angelis ◽  
Amelia Ravera ◽  
Maria Grazia Petti ◽  
Luigi Marino ◽  
...  
Keyword(s):  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yu Sun ◽  
Manveen K Gupta ◽  
Kate Stenson ◽  
Sathyamangla Prasad

Hypoxia to heart or brain is a primary cause of heart failure or stroke. Studies have shown that hypoxia increases the beta-adrenergic receptors (βARs) phosphorylation and dysfunction (Cheong et. al., 2016). These observations provide evidence that βARs can directly be regulated by hypoxia but less is known about the underlying mechanisms. We postulated that hypoxia shifts the homeostasis between kinase and phosphatase driven mechanisms may underlie βAR dysfunction. β2AR HEK 293 cells were exposed to hypoxia (2% O 2 ) and assessed the mechanisms underlying desensitization (G-protein coupled receptor kinases, GRKs) and resensitization (Protein phosphatase 2A, PP2A). Six hours of hypoxia treatment resulted in increase of βAR phosphorylation and GRK2 expression, and interestingly, the internalization of phosphorylated β2AR is β-arrestin independent. Assessment of βAR phosphorylation in the plasma membrane and endosomal fractions surprisingly, showed marked increase in β2AR phosphorylation in the endosomal fraction. Furthermore, we also observed that receptor associated PP2A activity was inhibited in the endosomes following hypoxia with minimal changes of activity at the plasma membranes. At the same time, PI3Kγ activity markedly upregulated in the endosomes along with an increase of I2PP2A phosphorylation. Similarly subjecting normal mice to 20 hours of hypoxia resulted in significant cardiac dysfunction (% FS: Normoxia 38.83% vs. Hypoxia 32.38%, P=0.0055; % EF: Normoxia 69.71% vs. Hypoxia 60.76%,P=0.0105) and was associated with significant increase in β2AR phosphorylation associated with significant loss in βAR function as measured by G-protein coupling adenylyl cyclase activity. Given that β-blockers confer beneficial effects, we tested whether β-blocker (propranolol) would prevent βARs phosphorylation under hypoxia or normoxia. Consistently, β-blocker treatment in normoxia results in increased β2AR phosphorylation however, remarkably β-blocker treatment in hypoxia results in loss of β2AR phosphorylation, reduction in GRK2 expression and increase in βAR-associated PP2A. These studies show that agonist-independent hypoxia-driven β2AR dysfunction can be ameliorated by β-blockers and the underlying mechanisms for this unexpected findings will be discussed in the presentation. These findings have significant clinical implications as understanding these mechanisms could provide novel insights into the benefits provided by β-blockers.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Kumiko Taguchi ◽  
Mari Hida ◽  
Mami Hasegawa ◽  
Haruka Narimatsu ◽  
Takayuki Matsumoto ◽  
...  

2016 ◽  
Vol Volume 12 ◽  
pp. 2333-2341 ◽  
Author(s):  
Xiuqing Tian ◽  
Qing Wang ◽  
Rui Guo ◽  
Lingling Xu ◽  
Qin Chen ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (12) ◽  
pp. 4715-4725 ◽  
Author(s):  
Federico Gatto ◽  
Richard Feelders ◽  
Rob van der Pas ◽  
Johan M. Kros ◽  
Fadime Dogan ◽  
...  

Recent in vitro studies highlighted G protein-coupled receptor kinase (GRK)2 and β-arrestins as important players in driving somatostatin receptor (SSTR) desensitization and trafficking. Our aim was to characterize GRK2 and β-arrestins expression in different pituitary adenomas and to investigate their potential role in the response to somatostatin analog (SSA) treatment in GH-secreting adenomas (GHomas). We evaluated mRNA expression of multiple SSTRs, GRK2, β-arrestin 1, and β-arrestin 2 in 41 pituitary adenomas (31 GHomas, 6 nonfunctioning [NFPAs], and 4 prolactinomas [PRLomas]). Within the GHomas group, mRNA data were correlated with the in vivo response to an acute octreotide test and with the GH-lowering effect of SSA in cultured primary cells. β-Arrestin 1 expression was low in all 3 adenoma histotypes. However, its expression was significantly lower in GHomas and PRLomas, compared with NFPAs (P < .01). GRK2 expression was higher in PRLomas and NFPAs compared with GHomas (P < .05). In the GHoma group, GRK2 expression was inversely correlated to β-arrestin 1 (P < .05) and positively correlated to β-arrestin 2 (P < .0001). SSA treatment did not affect GRK2 and β-arrestin expression in GHomas or in cultured rat pituitary tumor GH3 cells. Noteworthy, β-arrestin 1 was significantly lower (P < .05) in tumors responsive to octreotide treatment in vitro, whereas GRK2 and SSTR subtype 2 were significantly higher (P < .05). Likewise, β-arrestin 1 levels were inversely correlated with the in vivo response to acute octreotide test (P = .001), whereas GRK2 and SSTR subtype 2 expression were positively correlated (P < .05). In conclusion, for the first time, we characterized GRK2, β-arrestin 1, and β-arrestin 2 expression in a representative number of pituitary adenomas. β-Arrestin 1 and GRK2 seem to have a role in modulating GH secretion during SSA treatment.


2013 ◽  
Vol 305 (8) ◽  
pp. H1111-H1119 ◽  
Author(s):  
Wenjuan Xing ◽  
Youyou Li ◽  
Haifeng Zhang ◽  
Chunjuan Mi ◽  
Zuoxu Hou ◽  
...  

Exercise training lowers blood pressure and is a recommended nonpharmacological strategy and useful adjunctive therapy for hypertensive patients. Studies demonstrate that physical activity attenuates progression of hypertension. However, underlying mechanisms remain elusive. Vascular insulin resistance and endothelial dysfunction plays a critical role in the development of hypertension. The present study investigated whether long-term physical exercise starting during the prehypertensive period prevents the development of hypertension via improving vascular insulin sensitivity. Young (4 wk old) prehypertensive spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) control rats were subjected to a 10-wk free-of-loading swim training session (60 min/day, 5 days/wk). Blood pressure, mesenteric arteriolar vasorelaxation, G protein-coupled receptor kinase-2 (GRK2) expression and activity, and insulin-stimulated Akt/endothelial nitric oxide synthase (eNOS) activation were determined. SHRs had higher systolic blood pressure, systemic insulin resistance, and impaired vasodilator actions of insulin in resistance vessels when compared with WKY rats. Systolic blood pressure in SHRs postexercise was significantly lower than that in sedentary rats. Vascular insulin sensitivity in mesenteric arteries was improved after exercise training as evidenced by an increased vasodilator response to insulin. In addition, exercise downregulated vascular GRK2 expression and activity, which further increased insulin-stimulated vascular Akt/eNOS activation in exercised SHRs. Specific small interfering RNA knockdown of GRK2 in endothelium mimicked the effect of exercise-enhanced vascular insulin sensitivity. Likewise, upregulation of GRK2 by Chariot-mediated delivery opposed exercise-induced vascular insulin sensitization. Taken together, our results suggest that long-term exercise beginning at the prehypertensive stage improves vascular insulin sensitivity via downregulation of vascular GRK2 that may help to limit the progression of hypertension.


Neuroscience ◽  
2012 ◽  
Vol 222 ◽  
pp. 392-403 ◽  
Author(s):  
L.F. Ferrari ◽  
O. Bogen ◽  
N. Alessandri-Haber ◽  
E. Levine ◽  
R.W. Gear ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document