scholarly journals Progress in the Chemistry of Macrocyclic Meroterpenoids

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1582
Author(s):  
Dmitriy N. Shurpik ◽  
Alan A. Akhmedov ◽  
Peter J. Cragg ◽  
Vitaliy V. Plemenkov ◽  
Ivan I. Stoikov

In the last decade, the chemistry of meroterpenoids—conjugated molecules formed from isoprenyl fragments through biosynthetic pathways—has developed rapidly. The class includes some natural metabolites and fully synthetic fragments formed through nonbiological synthesis. In the field of synthetic receptors, a range of structures can be achieved by combining fragments of different classes of organic compounds into one hybrid macrocyclic platform which retains the properties of these fragments. This review discusses the successes in the synthesis and practical application of both natural and synthetic macrocycles. Among the natural macrocyclic meroterpenoids, special attention is paid to isoprenylated flavonoids and phenols, isoprenoid lipids, prenylated amino acids and alkaloids, and isoprenylpolyketides. Among the synthetic macrocyclic meroterpenoids obtained by combining the “classical” macrocyclic platforms, those based on cyclodextrins, together with meta- and paracyclophanes incorporating terpenoid fragments, and meroterpenoids obtained by macrocyclization of several terpene derivatives are considered. In addition, issues related to biomedical activity, processes of self-association and aggregation, and the formation of host–guest complexes of various classes of macrocyclic merotenoids are discussed in detail.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 106
Author(s):  
Joana N. Martins ◽  
João Carlos Lima ◽  
Nuno Basílio

To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


2021 ◽  
Vol 9 (1) ◽  
pp. 182
Author(s):  
Christine Ferrier-Pagès ◽  
Stephane Martinez ◽  
Renaud Grover ◽  
Jonathan Cybulski ◽  
Eli Shemesh ◽  
...  

The association between corals and photosynthetic dinoflagellates is one of the most well-known nutritional symbioses, but nowadays it is threatened by global changes. Nutritional exchanges are critical to understanding the performance of this symbiosis under stress conditions. Here, compound-specific δ15N and δ13C values of amino acids (δ15NAA and δ13CAA) were assessed in autotrophic, mixotrophic and heterotrophic holobionts as diagnostic tools to follow nutritional interactions between the partners. Contrary to what was expected, heterotrophy was mainly traced through the δ15N of the symbiont’s amino acids (AAs), suggesting that symbionts directly profit from host heterotrophy. The trophic index (TP) ranged from 1.1 to 2.3 from autotrophic to heterotrophic symbionts. In addition, changes in TP across conditions were more significant in the symbionts than in the host. The similar δ13C-AAs signatures of host and symbionts further suggests that symbiont-derived photosynthates are the main source of carbon for AAs synthesis. Symbionts, therefore, appear to be a key component in the AAs biosynthetic pathways, and might, via this obligatory function, play an essential role in the capacity of corals to withstand environmental stress. These novel findings highlight important aspects of the nutritional exchanges in the coral–dinoflagellates symbiosis. In addition, they feature δ15NAA as a useful tool for studies regarding the nutritional exchanges within the coral–symbiodiniaceae symbiosis.


2016 ◽  
Vol 20 (1) ◽  
pp. 105-113
Author(s):  
Zongcheng Miao ◽  
Yang Zhao ◽  
Xiaoping Huo

Abstract Currently research of lactic acid bacteria focus primarily on the functional probiotics, which are major beneficial biota in the gastrointestinal tract, have been industrial manufactured. Probiotics confer health benefits on the host need adequate amounts. However, the absence of data makes it difficult to ensure the maintenance biological activities and population of probiotic. In this research, a fractional factorial design and steepest ascent experiment were used to analyze the influence of lyoprotectant as carbohydrates, prebiotics and amino acids on the survival of the probiotic Lactobacillus rhamnosus. The results indicated a maximum survival rate and population of viable bacteria of L. rhamnosus to be 55.84 % and 1.60 ×1011 CFU/g after freeze-dried by using a combination of 10 g/100mL Sucrose, 2.5 g/100mL Isomaltooligosaccharide, 12 g/100mL Hydroxyproline. To a large extent, the survival and viability were dependent on the cryoprotectant used and make probiotics more attractive from a practical application in industrial viewpoint.


2021 ◽  
Author(s):  
Teresa Fornaro ◽  
Giovanni Poggiali ◽  
Maria Angela Corazzi ◽  
Cristina Garcia ◽  
Giulia Dimitri ◽  
...  

<div> </div> <p><strong>Abstract</strong></p> <p>We present laboratory activities of preparation, characterization, and UV irradiation processing of Mars soil analogues, which are key to support both in situ exploration and sample return missions devoted to detection of molecular biosignatures on Mars.</p> <p>In detail we prepared analog mineral samples relevant to the landing sites of past, present and future Mars exploration missions, such as Gale Crater, Jezero Crater, and Oxia Planum. We doped these samples with a large variety of organic molecules (both biotic and prebiotic molecules) like amino acids, nucleotides, monosaccharides, aldehydes, lipids. We investigated molecular photostability under UV irradiation by monitoring in situ possible modifications of infrared spectroscopic features. These investigations provide pivotal information for ground analysis carried out by rovers on Mars.</p> <p><strong>Introduction</strong></p> <p>Laboratory simulations of Mars are key to support the scientific activity and technology development of life detection instruments on board present and upcoming rover missions such as Mars2020 Perseverance [1] and ExoMars2022 Rosalind Franklin [2]. Studies about the stability of organic molecules in a Martian-like environment allow us to explore the conditions for the preservation of molecular biosignatures and develop models for their degradation in the Martian geological record. A systematic study of the effects of UV radiation on a variety of molecule-mineral complexes mimicking Martian soil can be key for the selection of the most interesting samples to analyse in situ or/and collect for sample return. Testing the sensitivity of different techniques for detection of the diagnostic features of molecular biosignatures embedded into mineral matrices as a function of the molecular concentration helps the choice, design and operation of flight instruments, as well as the interpretation of data collected on the ground during mission operative periods.</p> <p><strong>Methods</strong></p> <p>Experimental analyses were conducted in the Astrobiology Laboratory at INAF-Astrophysical Observatory of Arcetri (Firenze, Italy). Laboratory activities pertain to: (i) synthesis of Mars soil analogues doped with organic compounds that are considered potential molecular biosignatures; (ii) UV-irradiation processing of the Mars soil analogues under Martian-like conditions; and (iii) spectroscopic characterization of the Mars soil analogues.</p> <p><strong>Results</strong></p> <p>Such studies have shown to be very informative in identifying mineral deposits most suitable for preservation of organic compounds, while highlighting the complementarity of different techniques for biomarkers detection, which is critical for ensuring the success of space missions devoted to the search for signs of life on Mars.</p> <p>We will present a series of laboratory results on molecular degradation caused by UV on Mars and possible application to detection of organics by Martian rovers [3,4,5,6]. In detail, we investigated the photostability of several amino acids like glycine, alanine, methionine, valine, tryptophan, phenylalanine, glutamic acid, prebiotic molecules like urea, deoxyribose and glycolaldehyde, and biomarkers like nucleotides and phytane adsorbed on relevant Martian analogs. We monitored the degradation of these molecule-mineral complexes through in situ spectroscopic analysis, investigating the reflectance properties of the samples in the NIR/MIR spectral region. Such spectroscopic characterization of molecular alteration products provides support for two upcoming robotic missions to Mars that will employ NIR spectroscopy to look for molecular biosignatures, through the instruments SuperCam on board Mars 2020, ISEM, Ma_MISS and MicrOmega on board ExoMars 2022.</p> <p><strong>Acknowledgements</strong></p> <p>This research was supported by the Italian Space Agency (ASI) grant agreement ExoMars n. 2017-48-H.0.</p> <p><strong>References</strong></p> <p>[1] Farley K. A. et al. (2020) Space Sci. Rev. 216, 142.</p> <p>[2] Vago, J. L. et al. (2017) Astrobiology 6, 309–347.</p> <p>[3] Fornaro T. et al. (2013) Icarus 226, 1068–1085.</p> <p>[4] Fornaro T. et al. (2018) Icarus 313, 38-60.</p> <p>[5] Fornaro T. et al. (2020) Front. Astron. Space Sci. 7:539289.</p> <p>[6] Poggiali G. et al. (2020) Front. Astron. Space Sci. 7:18.</p>


Author(s):  
Gary W. Morrow

We have already seen that some of the basic building blocks used in the biosynthesis of natural products are amino acids such as phenylalanine, tyrosine, and others. These and other crucial construction materials such as the acyl group in acetyl-CoA are all ultimately derived from carbohydrates. In this chapter, we will present an abbreviated overview of the components of carbohydrate structure and metabolism sufficient for our purposes going forward, with a schematic flowchart showing how carbohydrates and amino acids are modified, combined, and branched off in various ways to yield the distinct set of biosynthetic pathways that will form the core of the remainder of the text. We will finish the chapter with a brief, general review of amino acid nomenclature and structure with emphasis on the key amino acids that will be used throughout the remainder of the text. We know that plants make glucose (C6H12O6) by photosynthesis using light, water (H2O), and carbon dioxide (CO2). Another way of looking at the formula for glucose is C6(H2O)6, that is, six carbon atoms and six water molecules. Thus, glucose was originally referred to as a hydrated form of carbon—a carbohydrate. But this is a very general term since there are many different types of carbohydrate compounds. One way to broadly classify carbohydrates is to identify them as either mono- (one), di- (two), oligo- (a few) or poly- (many) saccharides. For example, glucose (C6H12O6) cannot be broken down into simpler carbohydrates by simple hydrolysis, so it is classified as a monosaccharide, that is, a single, discrete carbohydrate compound. On the other hand, the carbohydrate sucrose (C12H22O11) is classified as a disaccharide since when it is subjected to aqueous hydrolysis, it yields two different monosaccharide carbohydrates, namely glucose (C6H12O6) and fructose (C6H12O6). Noting that glucose and fructose are different compounds but with the same molecular formula, they must be related to one another either as stereoisomers or as constitutional isomers, so further refinement of classification is needed. Structurally speaking, most monosaccharide carbohydrates are simply polyhydroxyaldehydes (aldoses) or polyhydroxyketones (ketoses) which can be further classified using a combination of aldo- or keto- prefixes along with suffixes such as triose, tetrose, pentose, or hexose to designate the number of carbon atoms.


Sign in / Sign up

Export Citation Format

Share Document