scholarly journals Terpene Research Is Providing New Inspiration for Scientists

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5480
Author(s):  
Pavel B. Drasar ◽  
Vladimir A. Khripach

This current Special Issue of Molecules gathers selected communications on terpenes and terpene derivatives, clearly demonstrating the sustained interest in and importance of natural products in this field; fields connected to secondary metabolites; and renewable resources of plant and animal compounds for medicinal, material, supramolecular, and general chemistry research [...]

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 482 ◽  
Author(s):  
Antonello Santini ◽  
Nicola Cicero

The Special Issue entitled: “Development of Food Chemistry, Natural Products, and Nutrition Research” is focused on the recent development of food chemistry research, including natural products’ sources and nutrition research, with the objectives of triggering interest towards new perspectives related to foods and opening a novel horizon for research in the food area. The published papers collected in this Special Issue are studies that refer to different aspects of food, ranging from food chemistry and analytical aspects, to composition, natural products, and nutrition, all examined from different perspectives and points of view. Overall, this Special Issue gives a current picture of the main topics of interest in the research and proposes studies and analyses that may prompt and address the efforts of research in the food area to find novel foods and novel applications and stimulate an environmentally-friendly approach for the re-use of the by-products of the agro-food area. This notwithstanding, the main challenge is currently addressed to achieve a full comprehension of the mechanisms of action of food components, the nutrients, outlining their high potential impact as preventive and/or therapeutic tools, not only as a source of macro- and/or micro-nutrients, which are necessary for all the metabolic and body functions.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 271
Author(s):  
Saverio Capodiferro ◽  
Luisa Limongelli ◽  
Gianfranco Favia

Many systemic (infective, genetic, autoimmune, neoplastic) diseases may involve the oral cavity and, more generally, the soft and hard tissues of the head and neck as primary or secondary localization. Primary onset in the oral cavity of both pediatric and adult diseases usually represents a true challenge for clinicians; their precocious detection is often difficult and requires a wide knowledge but surely results in the early diagnosis and therapy onset with an overall better prognosis and clinical outcomes. In the current paper, as for the topic of the current Special Issue, the authors present an overview on the most frequent clinical manifestations at the oral and maxillo-facial district of systemic disease.


Molbank ◽  
10.3390/m1205 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1205
Author(s):  
Mohamed Touaibia ◽  
Anne-Sylvie Fabiano-Tixier ◽  
Farid Chemat

Chloropinane and chloromenthene, synthesized from pinene and limonene, respectively, were compared with their non-halogenated analogs and n-hexane for their ability to solubilize natural products of interest such as β-carotenoids, vanillin, and rosmarinic acid. Chloropinane was six times more efficient than hexane for β-carotene solubilization. Chloromenthene was 15 times better than hexane. Vanillin was 20 times more soluble in chloropinane than in hexane. Chloropinane and chloromenthene were 3.5 and 2 times more efficient than hexane for rosmarinic acid solubilization. Obtained from pinene and limonene, two very abundant natural products, and even from their waste byproducts, chloropinane and chloromenthene can be an alternative to solvents from non-renewable resources.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4226
Author(s):  
Nikolaos Pitsikas ◽  
Konstantinos Dimas

Natural products or organic compounds isolated from natural sources as primary or secondary metabolites have inspired numerous drugs [...]


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2596-2607
Author(s):  
R. P. Vivek-Ananth ◽  
Ajaya Kumar Sahoo ◽  
Kavyaa Kumaravel ◽  
Karthikeyan Mohanraj ◽  
Areejit Samal

First dedicated manually curated resource on secondary metabolites and therapeutic uses of medicinal fungi. Cheminformatics based analysis of the chemical space of fungal natural products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 47
Author(s):  
Justin M. McNab ◽  
Jorge Rodríguez ◽  
Peter Karuso ◽  
Jane E. Williamson

Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 780
Author(s):  
Angelo Marcello Tarantino ◽  
Carmelo Majorana ◽  
Raimondo Luciano ◽  
Michele Bacciocchi

The current Special Issue entitled “Advances in Structural Mechanics Modeled with FEM” aims to collect several numerical investigations and analyses focused on the use of the Finite Element Method (FEM) [...]


2020 ◽  
Author(s):  
Audam Chhun ◽  
Despoina Sousoni ◽  
Maria del Mar Aguiló-Ferretjans ◽  
Lijiang Song ◽  
Christophe Corre ◽  
...  

AbstractBacteria from the Actinomycete family are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacteria Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide A but half of its putative BGCs are still orphan. Although previous studies have looked into using marine heterotrophs to induce orphan BGCs in Salinispora, the potential impact of co-culturing marine phototrophs with Salinispora has yet to be investigated. Following the observation of clear antimicrobial phenotype of the actinobacterium on a range of phytoplanktonic organisms, we here report the discovery of novel cryptic secondary metabolites produced by S. tropica in response to its co-culture with photosynthetic primary producers. An approach combining metabolomics and proteomics revealed that the photosynthate released by phytoplankton influences the biosynthetic capacities of S. tropica with both production of new molecules and the activation of orphan BGCs. Our work pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from actinobacteria.ImportanceThe alarming increase of antimicrobial resistance has generated an enormous interest in the discovery of novel active compounds. The isolation of new microbes to untap novel natural products is currently hampered because most biosynthetic gene clusters (BGC) encoded by these microorganisms are not expressed under standard laboratory conditions, i.e. mono-cultures. Here we show that co-culturing can be an easy way for triggering silent BGC. By combining state-of-the-art metabolomics and high-throughput proteomics, we characterized the activation of cryptic metabolites and silent biosynthetic gene clusters in the marine actinobacteria Salinispora tropica by the presence of phytoplankton photosynthate. We further suggest a mechanistic understanding of the antimicrobial effect this actinobacterium has on a broad range of prokaryotic and eukaryotic phytoplankton species and reveal a promising candidate for antibiotic production.


Sign in / Sign up

Export Citation Format

Share Document