scholarly journals The Quaternary Kurobegawa Granite: an example of a deeply dissected resurgent pluton

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisatoshi Ito ◽  
Yoshiko Adachi ◽  
Aitor Cambeses ◽  
Fernando Bea ◽  
Mayuko Fukuyama ◽  
...  

AbstractThe Quaternary Kurobegawa Granite, central Japan, is not only the youngest known granitic pluton exposed on the Earth’s surface, it is one of few localities where both Quaternary volcanics and related plutons are well exposed. Here, we present new zircon U–Pb ages together with whole rock and mineral geochemical data, revealing that the Kurobegawa Granite is a resurgent pluton that was emplaced following the caldera-forming eruption of the Jiigatake Volcanics at 1.55 ± 0.09 Ma. Following the eruption, the remnant magma chamber progressively cooled forming the voluminous Kurobegawa pluton in the upper crust (~ 6 km depth) until ~ 0.7 Ma when resurgence caused rapid uplift and erosion in the region. This is the first study to document the detailed spatiotemporal evolution of resurgent pluton for a Quaternary caldera system. Our new findings may contribute significantly to understanding the fate of active caldera systems that can produce supereruptions.

2019 ◽  
Vol 60 (5) ◽  
pp. 907-944 ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Olivier Namur ◽  
Adeline Dutrieux ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød ◽  
...  

Abstract Where and how arc magmas are generated and differentiated are still debated and these questions are investigated in the context of part of the Andean arc (Chilean Southern Volcanic Zone) where the continental crust is thin. Results are presented for the La Picada stratovolcano (41°S) that belongs to the Central Southern Volcanic Zone (CSVZ) (38°S–41·5°S, Chile) which results from the subduction of the Nazca plate beneath the western margin of the South American continent. Forty-seven representative samples collected from different units of the volcano define a differentiation trend from basalt to basaltic andesite and dacite (50·9 to 65·6 wt % SiO2). This trend straddles the tholeiitic and calc-alkaline fields and displays a conspicuous compositional Daly Gap between 57·0 and 62·7 wt % SiO2. Interstitial, mostly dacitic, glass pockets extend the trend to 76·0 wt % SiO2. Mineral compositions and geochemical data indicate that differentiation from the basaltic parent magmas to the dacites occurred in the upper crust (∼0·2 GPa) with no sign of an intermediate fractionation stage in the lower crust. However, we have currently no precise constraint on the depth of differentiation from the primary magmas to the basaltic parent magmas. Stalling of the basaltic parent magmas in the upper crust could have been controlled by the occurrence of a major crustal discontinuity, by vapor saturation that induced volatile exsolution resulting in an increase of melt viscosity, or by both processes acting concomitantly. The observed Daly Gap thus results from upper crustal magmatic processes. Samples from both sides of the Daly Gap show contrasting textures: basalts and basaltic andesites, found as lavas, are rich in macrocrysts, whereas dacites, only observed in crosscutting dykes, are very poor in macrocrysts. Moreover, modelling of the fractional crystallization process indicates a total fractionation of 43% to reach the most evolved basaltic andesites. The Daly Gap is thus interpreted as resulting from critical crystallinity that was reached in the basaltic andesites within the main storage region, precluding eruption of more evolved lavas. Some interstitial dacitic melt was extracted from the crystal mush and emplaced as dykes, possibly connected to small dacitic domes, now eroded away. In addition to the overall differentiation trend, the basalts to basaltic andesites display variable MgO, Cr and Ni contents at a given SiO2. Crystal accumulation and high pressure fractionation fail to predict this geochemical variability which is interpreted as resulting from variable extents of fractional crystallization. Geothermobarometry using recalculated primary magmas indicates last equilibration at about 1·3–1·5 GPa and at a temperature higher than the anhydrous peridotite solidus, pointing to a potential role of decompression melting. However, because the basalts are enriched in slab components and H2O compared to N-MORB, wet melting is highly likely.


2021 ◽  
Vol 7 (21) ◽  
pp. eabf0604
Author(s):  
Allen J. Schaen ◽  
Blair Schoene ◽  
Josef Dufek ◽  
Brad S. Singer ◽  
Michael P. Eddy ◽  
...  

Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events. Here, U-Pb zircon petrochronology and 40Ar/39Ar thermochronology constrain silicic melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. Our findings suggest that ~50 km3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indicates the thermal viability of advanced magma differentiation in the upper crust.


2020 ◽  
Author(s):  
Alexander Kawohl ◽  
Hartwig E. Frimmel ◽  
Wesley E. Whymark ◽  
Andrejs Bite

<p>The 1.85 Ga Sudbury Igneous Complex, Canada, is the remnant of a ~3 km thick impact-generated crustal melt sheet, caused by a 10-15 km large chondritic asteroid or comet that had left behind an impact structure of ~200 km prior to tectonic deformation und subsequent erosion. However, less is known about how deep the impactor penetrated the continental crust and where the source of the impact melt was. Mixing models including radioisotopes and trace elements on locally exposed country rocks have been used to evaluate their relative contribution to the impact melt. Based on this, Darling et al. (2010) have argued for shallow melting of the upper crust (UCC) only, either due to an oblique impact and/or a low-density bolide (comet). In contrast, the abundance of siderophile elements in impact melt-rocks was taken as evidence of a lower crustal source (Mungall et al. 2004), i.e. overlying rocks of the middle and upper crust must have been removed during the crater excavation stage. U-Pb age data on zircon xenocrysts also point to the involvement of rock types not exposed on surface (Petrus et al. 2016) in agreement with theoretical simulations, which have predicted a >20 km deep but unstable transient cavity (Ivanov & Deutsch 1999).</p><p>Large-scale (10s of km) and well-exposed impact melt dykes are a unique feature of Sudbury. The dykes are of granodioritic/quartz dioritic composition and are interpreted as clast-laden melt injections into the basement instantaneously after the impact (Pilles et al. 2018). Their vitric margins and distal extremities should therefore approximate the undifferentiated bulk composition of the Sudbury Igneous Complex prior to sulfide saturation. A compilation of published and new geochemical data of these dykes reveal a remarkably strong affinity (r<sup>2</sup> >0.989) to the average middle continental crust (MCC) as given by Rudnick & Gao (2014), especially in terms of major elements and fluid-immobile transition metals (Th, Zr, Hf, Nb, Ta, Ti, Sc, REE). The dykes are, however, significantly enriched in Ni, Cu and Cr, and to a lesser extent in V, Co and P relative to the typical UCC and MCC. A systematic loss of volatiles (Tl, Cd, Sn, Zn, Pb, Ag, Cs, Rb, Na, K, Ga, As) compared to either crustal model is not evident. These new observations favour a scenario in which the impactor and supracrustal rocks in the target area became vaporized and ejected. Shock melting affected predominantly the middle crust of the Canadian Shield. We also propose that the rocks that contributed to the impact melt were, on average, more mafic than the typical UCC and MCC. This is consistent with the report of exotic mafic-ultramafic xenoliths within the Sudbury Igneous Complex (Wang et al. 2018) and its anomalously high PGE concentrations (Mungall et al. 2004). (Ultra-)mafic rocks hidden at mid-crustal depth were a likely source of Ni-Cu-PGE-Co and gave rise to world class ore deposits presently mined at Sudbury. Such (ultra-)mafic intrabasement body might also explain the 1200 km<sup>2</sup> Temagami magnetic anomaly in the eastern vicinity of the Sudbury Complex.</p>


2019 ◽  
pp. 22-34
Author(s):  
Baatar Gendenjamts ◽  
Baatar Munkhtsengel ◽  
Dashdorjgochoo Odgerel ◽  
Dorjgochoo Sanchir ◽  
Bayaraa Ganbat

Dulaankhan granitic pluton, which is situated in northern Mongolia, the southern portion of the Mongolian-Transbaikalian belt (MTB), is petrographically composed of fine to medium-grained peralkaline granite and is intruded by a small body of quartz syenite. Geochemical data show the Dulaankhan granite and the intruding quartz syenite are both slightly peraluminous and high-K calc-alkaline, and are enriched in LREEs relative to the HREEs, with negative Eu anomaly, and in large ion lithophile elements (LILEs; such as K, Cs and Rb) with respect to high field strength elements (HFSEs; e.g., Nb, Ta and Ti). In terms of relations of Nb, Zr and Y to Ga/Al, however, the Dulaankhan granite and quartz syenite show geochemical features of A-type granites and can be classified into the A2-sub type granite, implying that the pluton formed in an post-collision extensional environment. LA-ICPMS zircon U-Pb dating results suggest that the Dulaankhan granite crystallized at 198±1 Ma, whereas the intruding quartz syenite at 180±1 Ma, consistent with our field observation that the quartz syenite intrudes the granite, attesting that the two granitic bodies were emplaced at different times although both of them formed during the Early Jurassic period. According to these new data, as well as regional ones, we propose that the Dulaankhan granitic pluton was likely generated in the post-collision setting related to the orogenesis of the Mongol-Okhotsk belt that seems to occur prior to Early Jurassic in the northern Mongolian segment.


2020 ◽  
Author(s):  
Gabriela Nogo Retnaningtyas Bunga Naen ◽  
Atsushi Toramaru ◽  
Tomoharu Miyamoto ◽  
Haryo Edi Wibowo

<p>Toba Caldera Complex, Indonesia is well known as the largest Quaternary caldera (87x33 km) that formed by four major eruptions among which the biggest one is the eruption of the Youngest Toba Tuff (YTT) about 74,000 years ago. Textural study of the pumice clast from YTT has been done to estimate the decompression rate by using bubble number density data. The result shows that decompression rate of Toba Caldera forming eruption varies in two order magnitude ranging from 10<sup>6 </sup>– 10<sup>8</sup> Pa/s. Southern pumices show the lower value than pumices from northern caldera. Similarly, new data about lithic distributions and mineral components of YTT from the northern and southern caldera showed several different characteristics. This fact suggests possibility of different processes which is distinguish production of southern and northern deposits. Therefore, understanding both conduit and chamber processes is needed to reveal the origin of differences in deposits. This study aims to elucidate magma chamber condition by characterizing the deposit especially crystals from YTT eruption.</p><p>Characterizations of Toba Tuffs have been made but not been enough to discuss YTT in detail. In this study, we focus on spatial differences in YTT deposits. Samples from four different locations were employed for the analyses. Component analysis was carried out on components larger than 2 mm. Whole-rock geochemical data were obtained by XRF. Petrography analysis for 37 thin sections was conducted using optical microscope. Textural analysis was carried out for 84 free crystals and 25 selected thin sections using microphotographs taken by SEM and further analyzed using image processing software. Chemical analysis for free crystal was carried out by SEM-EDS, while for pumices grain of 22 thin sections was conducted using EPMA.</p><p>Geochemical data showed that YTT magma is rhyodacitic to rhyolitic in whole-rock compositions with wide range of SiO<sub>2</sub> (69.15–76.83 wt.%). There are differences in abundance and type of pumices, free crystals, and lithic in each location<strong>.</strong> Major minerals are plagioclase, biotite, sanidine, and quartz. Common characteristics of northern and southern part deposit is that most of crystals are fractured, some forming aggregates, has anhedral shape and wide variation in size (0.003 mm<sup>2</sup>-13.113 mm<sup>2</sup>). However, there are differences between northern and southern deposits: presence of amphibole with larger size, orange quartz, sieve texture, patchy zoning, oscillatory zoning, crystal clots, and wider range of anorthite (An<sub>25</sub>– An<sub>87</sub>) is mostly found in northern deposits.</p><p>Plagioclase composition from northern part shows bimodal distribution suggesting that crystallization does not occur simultaneously by single process. Furthermore, plots of anorthite number versus size and of average anorthite number versus crystal content show random distribution, suggesting the complex crystallization of plagioclase: other processes than fractional crystallization in magma chamber. Moreover, presence of antecryst and disequilibrium textures in northern deposit indicates intervention from older rocks or even other systems. Different characteristics between northern and southern deposits suggest that YTT deposits are generated by multiple eruptions from independent, at least two magma chambers.</p><p>Keywords: Toba Caldera, the Youngest Toba Tuff (YTT), Crystal Characterization, Conduit Process, Chamber Process, Fractional Crystallization, Multiple eruptions</p>


Sign in / Sign up

Export Citation Format

Share Document