ultimate loading
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Huang Xian-Wen ◽  
Zhi-Shu Yao ◽  
Wang Bing-Hui ◽  
Zhou Ai-Zhao ◽  
Peng-Ming Jiang

Soil-rock slopes are widely distributed in central or western China. With the development of transportation, many subgrades are being built on mountainsides and therefore, slope stability has to be estimated under high loadings. To obtain better estimation results, a new rock contour establishing algorithm was developed, capable of considering interlock effect between rocks. Then, computed tomography (CT) and unconfined triaxial tests with ring top loadings were conducted. Based on rock distribution characteristics (obtained by CT photos) and the appearance of shear failure surfaces in slopes under ring top loadings, four rock skeleton status and five shear failure surface developing models were introduced. Based on the developed rock contour establishing algorithm, ten groups (twelve models per group) were established and calculated by finite element method (FEM). After this, normalized ultimate loading increasing multiple N, which was the ultimate loading ratio of rock-containing slope to uniform soil slope, was introduced to evaluate the influence of rock distributions on slope stability. The value of N was increased with the increase of rock content due to rock skeleton status. The values of N in slopes with angular rocks were about three times higher than those with round rocks which was due to complex geometric shape and distribution characteristics of angular rocks. Then, considering different slope angles (50°–60°), rock contents (0%–60%), and rock shapes (round and angular), the ultimate loading increasing multiple N of soil-rock slopes under high loadings was calculated and suggested for engineering designs. Finally, based on the failure surfaces of numerical modes, three typical failure modes were developed, which could be reference for designers to deal with slopes.


Fibers ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Ali A. Abdulhameed ◽  
AbdulMuttalib I. Said

Two of the main advantages of segmental construction are economics, as well as the rapid construction technique. One of the forms of segmental construction, for structural elements, is the segmental beams that built-in short sections, which referred to segments. This research aims to exhibit a new technique for the fabrication of short-span segmental beams from wedge-shaped concrete segments and carbon fiber reinforced polymers (CFRP) in laminate form. The experimental campaign included eight short-span segmental beams. In this study, two selected parameters were considered. These parameters are; the number of layers of CFRP laminates and the adhesive material that used to bond segments to each other, forming short-span segmental beams. The test results showed that for segmental beams reinforced by 2-layer of CFRP laminates, undergoes less deflection and sustained considerable ultimate loading value of 38.4%–104% than beams reinforced by 1-layer. Moreover, the test of segmental beams fabricated by adhering to the concrete segments with epoxy resin exhibited an increase in ultimate loading by 16%–65% than beams constructed using cementitious adhesive for bonding the wedge-shaped segments. Theoretically, segmental beams were analyzed by the American Concrete Institute (ACI) 440.2R-17 procedure with slight modifications. The analysis gave an overestimation of flexural strength for segmental beams when compared with experimental outcomes.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1714 ◽  
Author(s):  
Yiwei Xia ◽  
Xiaoping Li ◽  
Yu Peng ◽  
Mianheng Lai ◽  
Lu Wang

In recent years, load-bearing exterior sandwich wall boards have been adopted in civil engineering. The exterior walls of structures are often exposed to low velocity impacts such as stones, tools, and windborne debris, etc. The ultimate loading capacity, deformation, and ductility of sandwich walls are weakened by impact loads. In this study, the sandwich wall boards consisted of glass fiber reinforced plastic (GFRP) face sheets and a web-foam core. The core of wall boards was not the isotropic material. There was no doubt that the mechanical performance was seriously influenced by the impact locations. Therefore, it is necessary to carry out an investigation on the impact and post-impact performance of exterior wall boards. A comprehensive testing program was conducted to evaluate the effects of impact locations and impact energies on the maximum contact load, deflection, and contact time. Meanwhile, the compression after impact (CAI) performance of wall boards were also studied. The results indicated that the impact location significantly affects the performance of wall boards. Compared with an un-damaged wall board, the residual ultimate loading capacity of damaged wall boards reduced seriously, which were not larger than 50% of the designed ultimate loading capacity.


Author(s):  
Sergei M. Bosiakov ◽  
Denis V. Alekseev ◽  
Ihar E. Shpileuski ◽  
Vadim V. Silberschmidt ◽  
Feliks Stachowicz ◽  
...  

2016 ◽  
Vol 156 ◽  
pp. 16-23 ◽  
Author(s):  
Maitham Alibrahemy ◽  
Sébastien Durif ◽  
Philippe Bressolette ◽  
Abdelhamid Bouchaïr

Sign in / Sign up

Export Citation Format

Share Document