scholarly journals A Dual-Droplet Approach for Measuring the Hygroscopicity of Aqueous Aerosol

2021 ◽  
Author(s):  
Jack M. Choczynski ◽  
Ravleen Kaur Kohli ◽  
Craig S. Sheldon ◽  
Chelsea L. Price ◽  
James F. Davies

Abstract. Accurate characterization of the water activity and hygroscopicity of aqueous aerosol material allows us to predict the chemical and physical state of aerosol particles exposed to humid conditions in the environment. The hygroscopicity of aerosol determines the size, phase morphology, viscosity, chemical reactivity, and optical properties of constituent particles, and directly impacts their ability to form clouds in the atmosphere. In this work, we describe measurements of hygroscopicity using a linear quadrupole electrodynamic balance (LQ-EDB). We levitate two droplets, one droplet that acts as a relative humidity (RH) probe and one sample droplet, and expose them to controlled environmental conditions. We describe the development of a RH measurement using probe droplets of aqueous NaCl or LiCl, allowing for precise in-situ measurements of RH in the LQ-EDB chamber. We demonstrate that the RH may be determined with an accuracy of 0.5 % at 50 % RH and better than 0.1 % at 90 % RH using NaCl, and show that LiCl is effective at characterizing the RH from ~10 % RH up to ~90 %. We simultaneously measure the response of sample droplets containing aqueous material (including ammonium sulfate, citric acid, 1,2,6-hexanetriol, and tetraethylene glycol) and report hygroscopic growth via their radial growth factors. We use established thermodynamic models to validate the accuracy of the RH probe and to compare with the measured hygroscopicity of the samples. This approach shows significant advantages over other methods for accurately characterizing the hygroscopicity of samples with a range of characteristics, such as high viscosity and vapor pressure.

2021 ◽  
Vol 14 (7) ◽  
pp. 5001-5013
Author(s):  
Jack M. Choczynski ◽  
Ravleen Kaur Kohli ◽  
Craig S. Sheldon ◽  
Chelsea L. Price ◽  
James F. Davies

Abstract. Accurate characterization of the water activity and hygroscopicity of aqueous aerosol material allows us to predict the chemical and physical state of aerosol particles exposed to humid conditions in the environment. The hygroscopicity of aerosol determines the size, phase morphology, viscosity, chemical reactivity, and optical properties of constituent particles and directly impacts their ability to form clouds in the atmosphere. In this work, we describe measurements of hygroscopicity using a linear quadrupole electrodynamic balance (LQ-EDB). We levitate two droplets, one droplet that acts as a relative humidity (RH) probe and one sample droplet, and expose them to controlled environmental conditions. We describe the development of an RH measurement using probe droplets of aqueous NaCl or LiCl, allowing for precise in situ measurements of RH in the LQ-EDB chamber. We demonstrate that the RH may be determined with an accuracy of 0.5 % at 50 % RH and better than 0.1 % at 90 % RH using NaCl, and we show that LiCl is effective at characterizing the RH from ∼ 10 % RH up to ∼ 90 %. We simultaneously measure the response of sample droplets containing aqueous material (including ammonium sulfate, citric acid, 1,2,6-hexanetriol, and tetra-ethylene glycol) and report hygroscopic growth via their radial growth factors. We use established thermodynamic models to validate the accuracy of the RH probe and to compare with the measured hygroscopicity of the samples. This approach shows significant advantages over other methods for accurately characterizing the hygroscopicity of samples with a range of characteristics, such as high viscosity and vapor pressure.


2010 ◽  
Vol 10 (8) ◽  
pp. 3875-3890 ◽  
Author(s):  
P. Zieger ◽  
R. Fierz-Schmidhauser ◽  
M. Gysel ◽  
J. Ström ◽  
S. Henne ◽  
...  

Abstract. Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σsp(λ) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor f(RH, λ) is the key parameter to describe the RH effect on σsp(λ) and is defined as the RH dependent σsp(RH, λ) divided by the corresponding dry σsp(RHdry, λ). During our campaign the average f(RH=85%, λ=550 nm) was 3.24±0.63 (mean ± standard deviation), and no clear wavelength dependence of f(RH, λ) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded f(RH, λ) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor g(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, g(RH=85%) values to be 1.61±0.12 (mean±standard deviation). No clear seasonal shift of f(RH, λ) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of f(RH, λ). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 467 ◽  
Author(s):  
Weian Zong ◽  
Song Zhang ◽  
Chunhua Zhang ◽  
Chenliang Wu ◽  
Jingbo Zhang ◽  
...  

To obtain the wear-resistant camshaft with surface rigidity and core toughness and improve the service life of camshaft, wear-resistant Fe-based alloy gradient material was prepared by laser melt deposition. The traditional camshaft was forged by 12CrNi2V. In this paper, four types of wear-resistant Fe-based powders were designed by introducing various content of Cr3C2 and V-rich Fe-based alloy (FeV50) into stainless steel powder. The results showed that the gradient materials formed a satisfactory metallurgical bond. The composition of the phases was mainly composed of α-Fe, Cr23C6, and V2C phases. The increasing of Cr3C2 and FeV50 led to transform V2C into the V8C7. The microstructures were mainly cellular dendrite and intergranular structure. Due to the addition of Cr3C2 and FeV50, the average microhardness and wear resistance of gradient materials were significantly better than that of 12CrNi2V. The sample with 8% V had the highest microhardness of 853 ± 18 HV, which was 2.6 times higher than that of 12CrNi2V. The sample with 6% V had the best wear resistance, which was 21 times greater than that of 12CrNi2V.


1999 ◽  
Vol 14 (3) ◽  
pp. 975-979 ◽  
Author(s):  
Man-Young Park ◽  
Jong-Hoon Son ◽  
Sang-Woo Kang ◽  
Shi-Woo Rhee

For the metalorganic chemical vapor deposition (MOCVD) of copper, (hfac)Cu(VTMS) (hfac = hexafluoroacetylacetonate, VTMS = vinyltrimethylsilane) and (hfac)Cu(ATMS) (ATMS = allyltrimethylsilane) were compared, and the effect of L ligand in (hfac)Cu–L was examined. It was found by 1H-NMR (nuclear magnetic resonance) that the thermal stability of (hfac)Cu(VTMS) was better than that of (hfac)Cu(ATMS) due to the relatively weak Cu–ATMS bond. From in situ Fourier transform infrared spectroscopy (FTIR) experiments, the formation of Cu(hfac)2, the product of disproportion reaction of Cu(hfac), was observed in the gas phase and (hfac)Cu(ATMS) was found to be more reactive to form Cu(hfac)2. The minimum temperature for the deposition of copper films from (hfac)Cu(ATMS) was as low as 60 °C, which was about 70 °C lower than from (hfac)Cu(VTMS). The grain size of the film deposited with (hfac)Cu(ATMS) was substantially larger than that with (hfac)Cu(VTMS), which showed that the chemical reactivity of the precursor had an influence on the microstructure along with the deposition temperature.


2017 ◽  
Vol 17 (13) ◽  
pp. 8453-8471 ◽  
Author(s):  
Sandra Bastelberger ◽  
Ulrich K. Krieger ◽  
Beiping Luo ◽  
Thomas Peter

Abstract. Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Oliver Reich ◽  
Grégory David ◽  
Kιvanç Esat ◽  
Ruth Signorell

AbstractOptical traps are used to isolate and manipulate small objects in air and liquids, enabling the thorough characterization of their properties in situ. However, no broadly applicable technique for mass measurements of optically trapped objects is currently available. Here we propose an optical balance for mass measurements of optically trapped aerosol particles. By analyzing light-induced harmonic oscillations of a particle, its mass is determined non-destructively and with high accuracy on a time scale of seconds. Its performance is demonstrated for aqueous salt droplets, where masses as low as 4 pg (4 × 10−15 kg) have been measured with an accuracy of ~100 fg. The balance is straightforward to implement and broadly applicable.


2017 ◽  
Vol 10 (10) ◽  
pp. 3865-3876 ◽  
Author(s):  
Lihua Wang ◽  
Michael J. Newchurch ◽  
Raul J. Alvarez II ◽  
Timothy A. Berkoff ◽  
Steven S. Brown ◽  
...  

Abstract. The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.


2010 ◽  
Vol 10 (2) ◽  
pp. 3659-3698 ◽  
Author(s):  
P. Zieger ◽  
R. Fierz-Schmidhauser ◽  
M. Gysel ◽  
J. Ström ◽  
S. Henne ◽  
...  

Abstract. Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH<30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time of aerosol particles present in summer and fall at the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σsp(λ) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor f(RH,λ) is the key parameter to describe the RH effect on σsp(λ) and is defined as the RH dependent σsp(RH,λ) divided by the corresponding dry σsp(RHdry,λ). During our campaign the average f(RH=85%, λ=550 nm) was 3.24±0.63 (mean ± standard deviation), and no clear wavelength dependence of f(RH,λ) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded f(RH,λ) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor g, defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found on average for g values of 1.61±0.12 (mean ± standard deviation). No clear seasonal shift of f(RH,λ) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of f(RH,λ). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we give a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location.


Author(s):  
M. Ohtsuki ◽  
J.J. Schuler ◽  
A.V. Crewe ◽  
T. Ichinokawa

In-situ evaporating experiments on solid surfaces become meaningful only when the evaporation takes place after the surface of the object is fully cleaned in ultra high vacuum (UHV). A specimen heating stage is usually used for the cleaning process.For the observation of single heavy atom superstructures at atomic resolution in UHV, we have constructed a new specimen heating stage equipped with an insitu evaporator. The device is built into the specimen ante-chamber of the high-resolution UHV-STEM as shown in Figures 1 and 2. The vacuum of the chamber has been tested at 4 × 10-10 torr. with two 20 ℓ/ sec ion pumps attached close to the chamber. The vacuum of the STEM column is better than 1 × 10-10 torr. The heating stage is built into the specimen holder so that direct heating of the specimen is possible. In the detail shown in Figure 2, a thin specimen is mounted between two supporting grids which are then fastened together by two semi-circular tantalum clips. These clips are also used as contacts which carry the current to heat the specimen directly.


Sign in / Sign up

Export Citation Format

Share Document