scholarly journals Performance Analysis of Data Fusion Methods Applied to Epileptic Seizure Recognition

Author(s):  
Simone A. Ludwig

Abstract Epilepsy is a chronic neurological disorder that is caused by unprovoked recurrent seizures. The most commonly used tool for the diagnosis of epilepsy is the electroencephalogram (EEG) whereby the electrical activity of the brain is measured. In order to prevent potential risks, the patients have to be monitored as to detect an epileptic episode early on and to provide prevention measures. Many different research studies have used a combination of time and frequency features for the automatic recognition of epileptic seizures. In this paper, two fusion methods are compared. The first is based on an ensemble method and the second uses the Choquet fuzzy integral method. In particular, three different machine learning approaches namely RNN, ML and DNN are used as inputs for the ensemble method and the Choquet fuzzy integral fusion method. Evaluation measures such as confusion matrix, AUC and accuracy are compared as well as MSE and RMSE are provided. The results show that the Choquet fuzzy integral fusion method outperforms the ensemble method as well as other state-of-the-art classification methods.

Author(s):  
Xiaoting Zhou ◽  
Weicheng Wu ◽  
Ziyu Lin ◽  
Guiliang Zhang ◽  
Renxiang Chen ◽  
...  

Landslides are one of the major geohazards threatening human society. The objective of this study was to conduct a landslide hazard susceptibility assessment for Ruijin, Jiangxi, China, and to provide technical support to the local government for implementing disaster reduction and prevention measures. Machine learning approaches, e.g., random forests (RFs) and support vector machines (SVMs) were employed and multiple geo-environmental factors such as land cover, NDVI, landform, rainfall, lithology, and proximity to faults, roads, and rivers, etc., were utilized to achieve our purposes. For categorical factors, three processing approaches were proposed: simple numerical labeling (SNL), weight assignment (WA)-based and frequency ratio (FR)-based. Then 19 geo-environmental factors were respectively converted into raster to constitute three 19-band datasets, i.e., DS1, DS2, and DS3 from three different processes. Then, 155 observed landslides that occurred in the past decades were vectorized, among which 70% were randomly selected to compose a training set (TS1) and the remaining 30% to form a validation set (VS1). A number of non-landslide (no-risk) samples distributed in the whole study area were identified in low slope (<1–3°) zones such as urban areas and croplands, and also added to the TS1 and VS1 in the same ratio. For comparison, we used the FR approach to identify the no-risk samples in both flat and non-flat areas, and merged them into the field-observed landslides to constitute another pair of training and validation sets (TS2 and VS2) using the same ratio of 7:3. The RF algorithm was applied to model the probability of the landslide occurrence using DS1, DS2, and DS3 as predictive variables and TS1 and TS2 for training to obtain the SNL-based, WA-based, and FR-based RF models, respectively. Verified against VS1 and VS2, the three models have similar overall accuracy (OA) and Kappa coefficient (KC), which are 89.61%, 91.47%, and 94.54%, and 0.7926, 0.8299, and 0.8908, respectively. All of them are much better than the three models obtained by SVM algorithm with OA of 81.79%, 82.86%, and 83%, and KC of 0.6337, 0.655, and 0.660. New case verification with the recent 26 landslide events of 2017–2020 revealed that the landslide susceptibility map from WA-based RF modeling was able to properly identify the high and very high susceptibility zones where 23 new landslides had occurred, and performed better than the SNL-based and FR-based RF modeling, though the latter has a slightly higher OA and KC. Hence, we concluded that all three RF models achieve reasonable risk prediction, but WA-based and FR-based RF modeling deserves a recommendation for application elsewhere. The results of this study may serve as reference for the local authorities in prevention and early warning of landslide hazards.


2017 ◽  
Vol 25 (4) ◽  
pp. 413-434 ◽  
Author(s):  
Justin Grimmer ◽  
Solomon Messing ◽  
Sean J. Westwood

Randomized experiments are increasingly used to study political phenomena because they can credibly estimate the average effect of a treatment on a population of interest. But political scientists are often interested in how effects vary across subpopulations—heterogeneous treatment effects—and how differences in the content of the treatment affects responses—the response to heterogeneous treatments. Several new methods have been introduced to estimate heterogeneous effects, but it is difficult to know if a method will perform well for a particular data set. Rather than using only one method, we show how an ensemble of methods—weighted averages of estimates from individual models increasingly used in machine learning—accurately measure heterogeneous effects. Building on a large literature on ensemble methods, we show how the weighting of methods can contribute to accurate estimation of heterogeneous treatment effects and demonstrate how pooling models lead to superior performance to individual methods across diverse problems. We apply the ensemble method to two experiments, illuminating how the ensemble method for heterogeneous treatment effects facilitates exploratory analysis of treatment effects.


2012 ◽  
pp. 704-723
Author(s):  
Albert Ali Salah

Biometrics aims at reliable and robust identification of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are fingerprint, face, iris, palmprint and voice, but there are many other possible biometrics, including gait, ear image, retina, DNA, and even behaviours. This chapter presents a survey of machine learning methods used for biometrics applications, and identifies relevant research issues. The author focuses on three areas of interest: offline methods for biometric template construction and recognition, information fusion methods for integrating multiple biometrics to obtain robust results, and methods for dealing with temporal information. By introducing exemplary and influential machine learning approaches in the context of specific biometrics applications, the author hopes to provide the reader with the means to create novel machine learning solutions to challenging biometrics problems.


Rank level fusion is one of the after matching fusion methods used in multibiometric systems. The problem of rank information aggregation has been raised before in various fields. This chapter extensively discusses the rank level fusion methodology, starting with existing literature from the last decade in different application scenarios. Several approaches of existing biometric rank level fusion methods, such as plurality voting method, highest rank method, Borda count method, logistic regression method, and quality-based rank fusion method, are discussed along with their advantages and disadvantages in the context of the current state-of-the-art in the discipline.


2020 ◽  
Vol 12 (23) ◽  
pp. 3979
Author(s):  
Shuwei Hou ◽  
Wenfang Sun ◽  
Baolong Guo ◽  
Cheng Li ◽  
Xiaobo Li ◽  
...  

Many spatiotemporal image fusion methods in remote sensing have been developed to blend highly resolved spatial images and highly resolved temporal images to solve the problem of a trade-off between the spatial and temporal resolution from a single sensor. Yet, none of the spatiotemporal fusion methods considers how the various temporal changes between different pixels affect the performance of the fusion results; to develop an improved fusion method, these temporal changes need to be integrated into one framework. Adaptive-SFSDAF extends the existing fusion method that incorporates sub-pixel class fraction change information in Flexible Spatiotemporal DAta Fusion (SFSDAF) by modifying spectral unmixing to select spectral unmixing adaptively in order to greatly improve the efficiency of the algorithm. Accordingly, the main contributions of the proposed adaptive-SFSDAF method are twofold. One is to address the detection of outliers of temporal change in the image during the period between the origin and prediction dates, as these pixels are the most difficult to estimate and affect the performance of the spatiotemporal fusion methods. The other primary contribution is to establish an adaptive unmixing strategy according to the guided mask map, thus effectively eliminating a great number of insignificant unmixed pixels. The proposed method is compared with the state-of-the-art Flexible Spatiotemporal DAta Fusion (FSDAF), SFSDAF, FIT-FC, and Unmixing-Based Data Fusion (UBDF) methods, and the fusion accuracy is evaluated both quantitatively and visually. The experimental results show that adaptive-SFSDAF achieves outstanding performance in balancing computational efficiency and the accuracy of the fusion results.


2020 ◽  
Vol 32 (5) ◽  
pp. 829-864 ◽  
Author(s):  
Jing Gao ◽  
Peng Li ◽  
Zhikui Chen ◽  
Jianing Zhang

With the wide deployments of heterogeneous networks, huge amounts of data with characteristics of high volume, high variety, high velocity, and high veracity are generated. These data, referred to multimodal big data, contain abundant intermodality and cross-modality information and pose vast challenges on traditional data fusion methods. In this review, we present some pioneering deep learning models to fuse these multimodal big data. With the increasing exploration of the multimodal big data, there are still some challenges to be addressed. Thus, this review presents a survey on deep learning for multimodal data fusion to provide readers, regardless of their original community, with the fundamentals of multimodal deep learning fusion method and to motivate new multimodal data fusion techniques of deep learning. Specifically, representative architectures that are widely used are summarized as fundamental to the understanding of multimodal deep learning. Then the current pioneering multimodal data fusion deep learning models are summarized. Finally, some challenges and future topics of multimodal data fusion deep learning models are described.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4556 ◽  
Author(s):  
Yaochen Liu ◽  
Lili Dong ◽  
Yuanyuan Ji ◽  
Wenhai Xu

In many actual applications, fused image is essential to contain high-quality details for achieving a comprehensive representation of the real scene. However, existing image fusion methods suffer from loss of details because of the error accumulations of sequential tasks. This paper proposes a novel fusion method to preserve details of infrared and visible images by combining new decomposition, feature extraction, and fusion scheme. For decomposition, different from the most decomposition methods by guided filter, the guidance image contains only the strong edge of the source image but no other interference information so that rich tiny details can be decomposed into the detailed part. Then, according to the different characteristics of infrared and visible detail parts, a rough convolutional neural network (CNN) and a sophisticated CNN are designed so that various features can be fully extracted. To integrate the extracted features, we also present a multi-layer features fusion strategy through discrete cosine transform (DCT), which not only highlights significant features but also enhances details. Moreover, the base parts are fused by weighting method. Finally, the fused image is obtained by adding the fused detail and base part. Different from the general image fusion methods, our method not only retains the target region of source image but also enhances background in the fused image. In addition, compared with state-of-the-art fusion methods, our proposed fusion method has many advantages, including (i) better visual quality of fused-image subjective evaluation, and (ii) better objective assessment for those images.


2013 ◽  
Vol 333-335 ◽  
pp. 764-768
Author(s):  
Lin Bin Jia ◽  
Lin Li ◽  
Rong Nie

The paper considers the problem of detecting acoustic events in a robust manner. The dissimilarity measurement is used to measure the distance between acoustic samples. Then this distance is used as the replacement of the Euclidean distance to build the detection model with the SVM algorithm. All the well-known features are considered when we build model in a way of feature subset ensemble. Experiments are conducted to detect events under a variety of environmental sounds. The model demonstrates the robustness of the ensemble method with dissimilarity measurement. The detection model has shown to produce comparable performance as human listeners.


2018 ◽  
Vol 13 (1) ◽  
pp. 90-96
Author(s):  
Chao Wei ◽  
Lei Wang ◽  
Han Zhang

AbstractObjectiveThis work proposes to predict target genes and pathways for uveal melanoma (UM) based on an ensemble method and pathway analyses. Methods: The ensemble method integrated a correlation method (Pearson correlation coefficient, PCC), a causal inference method (IDA) and a regression method (Lasso) utilizing the Borda count election method. Subsequently, to validate the performance of PIL method, comparisons between confirmed database and predicted miRNA targets were performed. Ultimately, pathway enrichment analysis was conducted on target genes in top 1000 miRNA-mRNA interactions to identify target pathways for UM patients. Results: Thirty eight of the predicted interactions were matched with the confirmed interactions, indicating that the ensemble method was a suitable and feasible approach to predict miRNA targets. We obtained 50 seed miRNA-mRNA interactions of UM patients and extracted target genes from these interactions, such as ASPG, BSDC1 and C4BP. The 601 target genes in top 1,000 miRNA-mRNA interactions were enriched in 12 target pathways, of which Phototransduction was the most significant one. Conclusion: The target genes and pathways might provide a new way to reveal the molecular mechanism of UM and give hand for target treatments and preventions of this malignant tumor.


Sign in / Sign up

Export Citation Format

Share Document