scholarly journals Design and Build Solar Panels as Source Rice Thresher Motor Energy

Author(s):  
Trahman Sitepu ◽  
Ayu Tamara Malau ◽  
C Cholish ◽  
A Abdullah

Renewable energy generated from sunlight (Solar Panels) can be formed as alternative energy that can be applied to a source of electrical energy in rice thresher equipment. The use of solar energy with a power of 240 WP through the object on the rice thresher is able to replace the rice thresher automatically which is more effective. The power generated by solar energy will be processed into a charging source for the Regulated Battery Charger which can be supplied at a voltage to the control circuit to drive the DC motor. The average voltage generated by solar energy is 0.000394 volts/lux with a maximum voltage of 36.2 volts and a DC motor of 350 watts. In addition, the speed of this rice thresher is 950.8 rpm and is able to produce very good rice cutting against the designed solar energy capabilities.

CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Radiratu K ◽  
Belly Yan Dewantara

Abstrak - Perahu merupakan salah satu armada yang digunakan para nelayan untuk mencari mata pencaharian. Namun pada umumnya pada saat perahu nelayan beropesi mengandalkan bahan bakar sebagai penggerak kapal, hal ini sangatlah tidak menguntungkan mengingat harga bahan bakar semakin mahal. Pada penelitian ini akan membahas desain dan perhitungan daya listrik penggerak perahu nelayan dimana enegi listrik didapat dari energi surya. Dengan adanya sistem pemanfaatan energi surya ini akan menghemat pengeluaran nelayan bahkan bisa dikatakan bahwa energi ini merupakan energi cuma-cuma atau gratis. Pada penelitian ini akan dihitung desain bodi perahu dengan kapasitas 2-3 orang, perhitungan kebutuhan alat penggerak, perhitungan kebutuhan energi listrik dan perhitungan panel surya yang akan digunakan. Hasil dari penelelitian ini dapat dijadikan kajian untuk pengembangan perahu ramah lingkungan, ekonomis, dan pemanfatan enegi surya yang merupakan energi terbarukan. Kapal yang dirancang mempunyai dimensi 3 meter dan lebar 1,33 meter dengan kecepatan 3-4 knot dan menggunakan panel surya dengan spesifikasi 150Wp sebanyak 3 buah.Kata kunci: perahu nelayan, energi penggerak kapal, panel surya, energi terbarukan, MPPTAbstract—Boat is one of the fleets that fishermen use livelihoods. But in general, when fishing boats oppose relying on fuel as a boat propeller, this is very unprofitable given the increasingly expensive. In this study will discuss the design and calculation of electric power driving a fishing boat where the electric energy is obtained from solar energy. Solar energy system will save fishermen's expenses. It can even be said that this energy is free energy. In this study the boat body design will be design with a capacity of 2-3 people, calculation of propulsion requirements, calculation of electrical energy requirements and calculation of solar panels to be used. The results of this research can be used as a study for the development of environmentally friendly, economical boats and the utilization of solar energy which is renewable energy. The ship was designed to have dimensions of 3 meters and 1.33 meters wide with a speed of 3-4 knots and uses 3 solar panels with capasity 150Wp.Keywords: fishing boat, boat propulsion energy, solar panel, renewable energy, MPPT


2018 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Nurhadi Nurhadi ◽  
Mochammad Ali M ◽  
Daif Rahuna ◽  
Sutopo P. Fitri

Giliiyang Island is a famous island that has the highest oxygen content in the world, and very beautiful sea, but the location is far from PLN / elctictric grid system. It is necessary to develop environmentally friendly alternative energy. One of alternative energy offered is solar energy. Solar energy is energy that’s form of light and heat from the sun. This energy can be utilized using a range of technologies such as solar heating, solar photovoltaic, solar thermal power, solar architecture, and artificial photosynthesis. Based on the calculation is known that the electrical energy demand for Giliiyang Island is around 1984 kWh. The design of two off-grid solar power systems which each capacity about 1 MWp will require 3000 m2 of land with 780 solar panels that have an intensity of 800 W / m2. Deep cycle battery with 24 V DC 200 AH as storage media required about 504 pieces.


Jurnal METTEK ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 105
Author(s):  
I Ketut Rizki Fibrina Firmandanu ◽  
I Gusti Bagus Wijaya Kusuma ◽  
I Wayan Bandem Adnyana

Pemanfaatan energi surya sangat berpotensi dimanfaatkan sebagai sumber energi alternatif. Energi surya merupakan energi terbarukan yang produktif sehingga melalui penelitian ini sangat erat kaitannya dengan program pemanfaatan sumber – sumber energi terbarukan untuk memasok kebutuhan energi. Penelitian telah dilaksanakan di PT Indonesia Power Unit Bisnis Pembangkitan Bali. Penelitian ini bertujuan untuk mengetahui efisiensi dan energi optimum yang dihasilkan oleh panel surya. Pengujian dilakukan dengan pengukuran intensitas cahaya, tegangan dan arus pada panel surya dengan pemasangan kemiringan sesuai pada atap Gedung A PT Indonesia Power Unit Bisnis Pembangkitan Bali. Hasil pengujian menunjukkan bahwa efisiensi panel surya maksimum di PLTS PT Indonesia Power terjadi pada bulan November sebesar 9,56% dan daya keluaran optimum yang dihasilkan sebesar 240 watt. Daya tersebut dicapai pada bulan November dan Desember pada setiap hari pukul 13.00 sampai 14.00 WITA. Utilization of solar energy potential is exploited as a source of alternative energy. Solar energy is a renewable energy that are productive so that through this research is closely associated with the program source – utilization of renewable energy sources to supply energy needs. Research has been carried out at PT Indonesia Power Generation Business Unit. The test is done by measuring the intensity of light, voltage and current on solar panel installation with the slope of the fit on the roof of the building with PT Indonesia Power Generation Business Unit of Bali. The results of testing shows that maximum efficiency solar panels in PLTS PT Indonesia Power Generation Business Unit of Bali occur in november as much as 9,56 % and power output optimum position produced as much as 240 watts .Power being achieved in november and december at all the appointed 13.00 until 14.00 WITA.


2018 ◽  
Vol 73 ◽  
pp. 01008
Author(s):  
Isworo Pujotomo ◽  
Retno Aita Diantari

To meet the needs of electrical energy, there are alternative energy sources such as solar power in a form of solar power plant. An important equipment aim to handle the of converting of solar energy into electrical energy are solar cells. The development of devices used to modify solar energy into electrical energy has been done since the mid-first half of the last century. Gradually the device is named by scientists with a photovoltaic device, or so-called solar cells (solar cell. This research tested polycrystalline solar module in sunny weather, bright cloudy and overcast. The test results show the effect of solar cell surface temperature to the value of its output power [1]. The condition of the polycrystalline solar panels will work optimally at the measured 32° C - 50° C temperature range on the surface of the solar cell.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Hendrayana Hendrayana

Electrical energy crisis related to the increasing population in an area will increase the electrical energy customers. Besides diminishing reserves of fossil energy that is required of alternative energy from renewable energy sources. The problem is in incorporating a potential source of renewable energy with a generator needs power generation hybrid, the hybrid system with a generator as backup energy utilization is less than optimal because when there was a deficit power generator takes over all of the power wasted in renewable energy generation. The purpose of study is to produce a hybrid system design between the generation of solar energy, wind energy and generator as support (support) when the power deficit in energy of renewable generator. Research Method in the design of hybrid system is a design block diagram consisting of solar panels, wind turbines, inverters, and generator. At this stage it has produced research outputs in the form of models of hybrid renewable energy generation systems and generators, then make a circuit simulation and measurement. The results of this research is a hybrid system that works adaptive- connected the generator to the system when the power deficit or increase the load to provide power support on renewable energy generation. This hybrid system with a capacity of 3.5 kW less power than the previous system with the composition generator 5.7 kW 2.2 kW of renewable energy consists of a 1 kW solar panels, wind turbines 1.3 kW and 1.3 kW generator voltage at 310V DC bus coupling, the voltage on the bus coupling AC 220V / 50 Hz, total load current at 16A. The percentage utilization of renewable energy rose from 11.73% to 24,94% and generator utilization fell from 24.50% to 16.74%.


2020 ◽  
Vol 6 (3) ◽  
pp. 53-57
Author(s):  
A. T. Abdukadirov ◽  
◽  
A. A. Shodiev

This article describes the project of a device proposed by the authors for converting solar energy into electrical energy, as well as for accumulating and storing energy through molten salt. It describes the main details and principle of operation of this device and its special significance in the field of energy as a renewable energy source, which has the highest efficiency


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
T. Pimonenko ◽  
O. Lyulyov ◽  
N. Letunovska ◽  
O. Lytvynenko ◽  
A. Nazarenko

The article aims to study current trends in the use of solar energy in Ukraine and the world as one of the main directions of decarbonization of the national economy. The authors systematize the prospects, advantages and disadvantages of the development of renewable energy sources. They conducted a comparative analysis of the "efficiency" of solar energy in some countries and Ukraine. The authors determined that the leading position in terms of the share of energy consumed from renewable sources is occupied by countries with developed economies due to the availability of effective motivational mechanisms. From the experience of EU countries, the authors concluded that renewable energy sources form a prerequisite for obtaining additional socio-economic and environmental effects. In the presence of favorable market conditions, renewable energy sources can increase the level of energy security in the country and its energy independence. The article analyzes the legislation of Ukraine on stimulating the development of alternative energy. The authors proposed two opposed ways of further developing solar energy in Ukraine. In particular, the country can implement methods of using alternative energy, which developed countries have successfully implemented. Another area involves increasing research and innovation in implementing, using, maintaining, and utilizing energy-generating devices from alternative energy sources. Despite the polarity of the proposed directions for further development of renewable energy, in both cases, the state policy on attracting investment and promoting the use of energy from alternative energy sources is crucial. In addition, the authors noted the benefits for society from the development and implementation of alternative energy sources. The scaling up and promotion of energy production technologies from alternative sources can reduce carbon emissions, which has been an urgent problem globally.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


Sign in / Sign up

Export Citation Format

Share Document