DESIGN IMPROVEMENT OF A GAS-FIRED PYROLYSIS REACTOR

2020 ◽  
Vol 5 (2) ◽  
pp. 22-29
Author(s):  
J.G. Akinbomi ◽  
K.F.K Oyedeko ◽  
L Salami ◽  
K.A. Aminu ◽  
A,N, Anozie ◽  
...  

Design defects in a reactor often results in poor reactor performance. This study examined the effects of variations in burner holes and air to fuel ratio on thermal efficiency and emission characteristics of three locally fabricated gas cooking stoves with 48, 96 and 144 burner holes. The purpose of the study was to use the stove design with optimal efficiency and lowest emissions, as a model for improving the design of a gas-fired pyrolysis reactor that had air-fuel intake port defect with consequent incomplete combustion. The results of the study showed that stove with 96 burner holes produced the lowest emissions of 89.672 mg/m3 while stove with 144 burner holes was found to be the most fuel efficient with efficiency of 69.0. The results imply that a trade-off exists in the design of the burners to achieve either the most environmentally-friendly or most fuel-efficient burner. However, a compromise of the two objectives of maximizing fuel efficiency and minimizing emissions was reached by choosing as a model, the burner having 96 holes with thermal efficiency of 64.3% and emissions of 89.672 mg/m3 over burner having 144 holes with thermal efficiency of 69.0% and emissions of 258.974 mg/m3 . Keywords: Air flow, , Burner Holes, Combustion, Emissions, Improved design, Thermal ef

Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


Author(s):  
M. Georgallis ◽  
P. Nowak ◽  
M. Salcudean ◽  
I. S. Gartshore

Rotary kilns have wide use in industry from the calcination of limestone to cement manufacturing to calcining of petroleum coke etc. Problems such as low thermal efficiency and low product quality have plagued rotary kiln operations yet these machines have survived and have been continuously improved (fuel efficiency, automation) for over a century.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6656
Author(s):  
Zhijian Wang ◽  
Shijin Shuai ◽  
Zhijie Li ◽  
Wenbin Yu

Today, the problem of energy shortage and climate change has urgently motivated the development of research engaged in improving the fuel efficiency of internal combustion engines (ICEs). Although many constructive alternatives—including battery electric vehicles (BEVs) and low-carbon fuels such as biofuels or hydrogen—are being put forward, they are starting from a very low base, and still face significant barriers. Nevertheless, 85–90% of transport energy is still expected to come from combustion engines powered by conventional liquid fuels even by 2040. Therefore, intensive passion for the improvement of engine thermal efficiency and decreasing energy loss has driven the development of reliable approaches and modelling to fully understand the underlying mechanisms. In this paper, literature surveys are presented that investigate the relative advantages of technologies mainly focused on minimizing energy loss in engine assemblies, including pistons and rings, bearings and valves, water and oil pumps, and cooling systems. Implementations of energy loss reduction concepts in advanced engines are also evaluated against expectations of meeting greenhouse gas (GHG) emissions compliance in the years to come.


2018 ◽  
Vol 220 ◽  
pp. 03011
Author(s):  
T. Aurthur Vimalachandran ◽  
Andrey Yurievich Tkachenko ◽  
Viktor Nikolaevich Rybakov

A detailed parametric analysis was performed on entire performance cycle model of micro gas turbine power plant. The parametric analysis was studied using Russian Software named ASTRA. Evaluation of parameters on both design and operation condition was performed. The parameters focused here are power output, compression work, specific fuel consumption and thermal efficiency. Various stages such as use of Intercooler, Pre-heater and their optimal influence on thermodynamics were performed. The task was to optimize the maximum output in free turbine power by simulating various cycles of compressor pressure ratios for centrifugal compressor, ambient temperature in various altitude; air-fuel mix ratio and turbine inlet temperature. The results are analysed and presented in this article, the Analysis known as on-design analysis. The compressor uses 66% of turbine work output. The research analysis focuses on reducing the use of power output by compressor and maximizes the power output by free turbine. The results could be summarized as increase in gas turbine thermal efficiency does not always improve the gas turbine efficiency. Optimum power increase of up to 3% was improved and improvement in fuel efficiency improved about 4%.


2016 ◽  
Author(s):  
Yasushi Yoshihara ◽  
Koichi Nakata ◽  
Daishi Takahashi ◽  
Tetsuo Omura ◽  
Atsuharu Ota

2015 ◽  
Vol 162 (3) ◽  
pp. 78-84
Author(s):  
Farzad Shokrollahihassanbarough ◽  
Ali Alqahtani ◽  
Mirosław Wyszynski

Today’s technology leveraging allows OP2S (Opposed Piston 2-Stroke) engine to be considered as an alternative for the conventional four-stroke (4S) engines as mechanical drive in various applications, mainly in transportation. In general, OP2S engines are suited to compete with conventional 4-stroke engines where power-to-weight ratio, power-to-bulk volume ratio and fuel efficiency are requirements. This paper does present a brief advent, as well as the renaissance of OP2S engines and the novel technologies which have been used in the new approach. Also precise thermodynamic benefits have been considered, to demonstrate the fundamental efficiency advantage of OP2S engines. Hence, simulations of two different engine configurations have been taken into consideration: a one-cylinder opposed piston engine and two-cylinder conventional piston four-stroke engine. In pursuance of fulfilling this goal, the engines have been simulated in AVL Boost™ platform which is one of the most accurate Virtual Engine Tools, to predict engine performance such as combustion optimization, emission and fuel consumption. To minimize the potential differences of friction losses, the bore and stroke per cylinder are taken as constant. The closed-cycle performance of the engine configurations is compared using a custom analysis tool that allows the sources of thermal efficiency differences to be identified and quantified. As a result, brake thermal efficiency, power and torque of OP2S engine have been improved compared to conventional engines while emission concern has been alleviated.


2018 ◽  
Vol 78 (4) ◽  
pp. 968-981 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Mehedi Hasan ◽  
Rezaul Haque ◽  
Muhammed Alamgir

Abstract Hydrodynamic performance of a biological reactor is an important design concern since it directly affects the treatment efficiency. In this research, a hybrid anaerobic baffled reactor (HABR) was proposed with improved design concepts and principles. The HABR consisted of a front sedimentation chamber, four regular baffled chambers followed by two floated filter media chambers. The effects of operating variables 5–20 hr hydraulic retention time (HRT) and 10–40 °C of influent temperature, as well as their interactive effects, on the hydrodynamic behaviour were investigated by residence time distributions study and response surface methodology. The study suggests that the hydrodynamic performance is greatly influenced by the number of chambers in the reactor rather than HRT and influent temperature. The influence of HRT and feed temperature were mainly observed on the front chambers (1–4) rather than rear chambers (5–7). The optimum reactor performance – low dead space (<10%), excellent hydraulic efficiency (>0.75), and intermediate mixing pattern (Peclet number > 10) – were achieved using the proposed HABR with more than five chambers.


Author(s):  
W.K. Lo ◽  
J.C.H. Spence

An improved design for a combination Scanning Tunnelling Microscope/TEM specimen holder is presented. It is based on earlier versions which have been used to test the usefulness of such a device. As with the earlier versions, this holder is meant to replace the standard double-tilt specimen holder of an unmodified Philips 400T TEM. It allows the sample to be imaged simultaneously by both the STM and the TEM when the TEM is operated in the reflection mode (see figure 1).The resolution of a STM is determined by its tip radii as well as its stability. This places strict limitations on the mechanical stability of the tip with respect to the sample. In this STM the piezoelectric tube scanner is rigidly mounted inside the endcap of the STM holder. The tip coarse approach to the sample (z-direction) is provided by an Inchworm which is located outside the TEM vacuum.


Sign in / Sign up

Export Citation Format

Share Document