scholarly journals Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults

2020 ◽  
Vol 3 (11) ◽  
pp. e2025454 ◽  
Author(s):  
Hana Kahleova ◽  
Kitt Falk Petersen ◽  
Gerald I. Shulman ◽  
Jihad Alwarith ◽  
Emilie Rembert ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2917
Author(s):  
Hana Kahleova ◽  
Emilie Rembert ◽  
Jihad Alwarith ◽  
Willy N. Yonas ◽  
Andrea Tura ◽  
...  

Diet modulates gut microbiota and plays an important role in human health. The aim of this study was to test the effect of a low-fat vegan diet on gut microbiota and its association with weight, body composition, and insulin resistance in overweight men and women. We enrolled 168 participants and randomly assigned them to a vegan (n = 84) or a control group (n = 84) for 16 weeks. Of these, 115 returned all gut microbiome samples. Gut microbiota composition was assessed using uBiome Explorer™ kits. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was quantified with the predicted clamp-derived insulin sensitivity index from a standard meal test. Repeated measure ANOVA was used for statistical analysis. Body weight decreased in the vegan group (treatment effect −5.9 kg [95% CI, −7.0 to −4.9 kg]; p < 0.001), mainly due to a reduction in fat mass (−3.9 kg [95% CI, −4.6 to −3.1 kg]; p < 0.001) and in visceral fat (−240 cm3 [95% CI, −345 to −135 kg]; p < 0.001). PREDIcted M, insulin sensitivity index (PREDIM) increased in the vegan group (treatment effect +0.83 [95% CI, +0.48 to +1.2]; p < 0.001). The relative abundance of Faecalibacterium prausnitzii increased in the vegan group (+5.1% [95% CI, +2.4 to +7.9%]; p < 0.001) and correlated negatively with changes in weight (r = −0.24; p = 0.01), fat mass (r = −0.22; p = 0.02), and visceral fat (r = −0.20; p = 0.03). The relative abundance of Bacteroides fragilis decreased in both groups, but less in the vegan group, making the treatment effect positive (+18.9% [95% CI, +14.2 to +23.7%]; p < 0.001), which correlated negatively with changes in weight (r = −0.44; p < 0.001), fat mass (r = −0.43; p < 0.001), and visceral fat (r = −0.28; p = 0.003) and positively with PREDIM (r = 0.36; p < 0.001), so a smaller reduction in Bacteroides fragilis was associated with a greater loss of body weight, fat mass, visceral fat, and a greater increase in insulin sensitivity. A low-fat vegan diet induced significant changes in gut microbiota, which were related to changes in weight, body composition, and insulin sensitivity in overweight adults, suggesting a potential use in clinical practice.


2005 ◽  
Vol 118 (9) ◽  
pp. 991-997 ◽  
Author(s):  
Neal D. Barnard ◽  
Anthony R. Scialli ◽  
Gabrielle Turner-McGrievy ◽  
Amy J. Lanou ◽  
Jolie Glass

2007 ◽  
Vol 114 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Robert Hägerkvist ◽  
Leif Jansson ◽  
Nils Welsh

The aim of the present study was to investigate whether imatinib affects insulin sensitivity and glucose disposal in HF (high-fat)-fed rats. Sprague–Dawley rats were fed either a standard pelleted rat food (low-fat diet) or an HF diet (60% fat) for 8 weeks. During the last 10 days of the HF diet regime, rats received saline alone or imatinib (50 or 100 mg/kg of body weight) daily by gavage. The higher dose of imatinib resulted in a decreased psoas fat pad weight in the HF-treated rats. Under euglycaemic hyperinsulinaemic clamp conditions, HF-fed rats exhibited increased insulin concentrations and decreased glucose disposal. The lower (50 mg/kg of body weight), but not the higher (100 mg/kg of body weight), dose of imatinib normalized insulin sensitivity and glucose disposal without affecting glucose metabolism in low-fat-fed rats. Hepatic glucose production at both fasting and hyperinsulinaemic conditions was only weakly affected by imatinib. We conclude that a moderate dose of imatinib efficiently counteracts HF-induced peripheral insulin resistance, and that further studies on the mechanisms by which imatinib increases insulin action in muscle and fat tissues might generate novel strategies for the treatment of Type 2 diabetes.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 392
Author(s):  
Lydia Katsika ◽  
Mario Huesca Flores ◽  
Yannis Kotzamanis ◽  
Alicia Estevez ◽  
Stavros Chatzifotis

This study was conducted to elucidate the interaction effects of temperature and dietary lipid levels (2 × 2 factorial experiment) on the growth performance, muscle, and liver composition in adult farmed European sea bass (Dicentrarchus labrax). Two groups of fish (190 g; 60 fish per group) were distributed in 12 tanks in triplicates and kept at two different temperature regimes; one starting at 23 °C and then changed to 17 °C for 61 days, and the other starting at 17 °C and then changed to 23 °C for 39 days. Two commercial diets containing both ~44% crude protein but incorporating different dietary lipid levels, 16.5% (D16) and 20.0% (D20) (dry matter (DM)), were fed to the fish to apparent satiation; the type of diet fed to each fish group remained constant throughout the experiment. Final body weight, weight gain, and specific growth rate were significantly higher for the fish group held at 23 °C compared to the fish group at 17 °C (before the temperature changes), while the dietary fat content did not have any profound effect in both groups. Furthermore, the different temperature regimes did not affect muscle or liver composition, but, on the contrary, dietary lipids affected hepatosomatic, perivisceral fat, and visceral indexes. Feed conversion ratio and specific growth rate were not affected by the dietary lipid level. An interaction of temperature and dietary lipid content was observed in daily feed consumption (DFC) and final body weight (FBW).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neesha S. Patel ◽  
Ujwal R. Yanala ◽  
Shruthishree Aravind ◽  
Roger D. Reidelberger ◽  
Jon S. Thompson ◽  
...  

AbstractIn patients with short bowel syndrome, an elevated pre-resection Body Mass Index may be protective of post-resection body composition. We hypothesized that rats with diet-induced obesity would lose less lean body mass after undergoing massive small bowel resection compared to non-obese rats. Rats (CD IGS; age = 2 mo; N = 80) were randomly assigned to either a high-fat (obese rats) or a low-fat diet (non-obese rats), and fed ad lib for six months. Each diet group then was randomized to either underwent a 75% distal small bowel resection (massive resection) or small bowel transection with re-anastomosis (sham resection). All rats then were fed ad lib with an intermediate-fat diet (25% of total calories) for two months. Body weight and quantitative magnetic resonance-determined body composition were monitored. Preoperative body weight was 884 ± 95 versus 741 ± 75 g, and preoperative percent body fat was 35.8 ± 3.9 versus 24.9 ± 4.6%; high-fat vs. low fat diet, respectively (p < 0.0001); preoperative diet type had no effect on lean mass. Regarding total body weight, massive resection produced an 18% versus 5% decrease in high-fat versus low-fat rats respectively, while sham resection produced a 2% decrease vs. a 7% increase, respectively (p < 0.0001, preoperative vs. necropsy data). Sham resection had no effect on lean mass; after massive resection, both high-fat and low-fat rats lost lean mass, but these changes were not different between the latter two rat groups. The high-fat diet and low-fat diet induced obesity and marginal obesity, respectively. The massive resection produced greater weight loss in high-fat rats compared to low-fat rats. The type of dietary preconditioning had no effect on lean mass loss after massive resection. A protective effect of pre-existing obesity on lean mass after massive intestinal resection was not demonstrated.


Sign in / Sign up

Export Citation Format

Share Document