scholarly journals Modeling of interior reinforced concrete beam‐column joint based on an innovative theory of joint shear failure

2019 ◽  
Vol 2 (3) ◽  
pp. 287-301
Author(s):  
Xuan Hoa Tran ◽  
Yoshiro Kai
2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


Structures ◽  
2019 ◽  
Vol 20 ◽  
pp. 353-364 ◽  
Author(s):  
Nassereddine Attari ◽  
Youcef Si Youcef ◽  
Sofiane Amziane

2017 ◽  
Vol 737 ◽  
pp. 441-447 ◽  
Author(s):  
Stefanus Kristiawan ◽  
Agus Supriyadi ◽  
Senot Sangadji ◽  
Hapsara Brian Wicaksono

Degradation of reinforced concrete (RC) element could lead to a reduction of its strength and serviceability. The degradation may be identified in the form of spalling of concrete cover. For the case of RC beam, spalling of concrete cover could occur at the web of the shear span due to corrosion of the web reinfocements. The shear strength of the damaged-RC beam possibly will become less conservative compared to the corresponding flexural strength with a risk of brittle failure. Patch repair could be a choice to recover the size and strength of the damaged-RC beam. This research investigates the shear failure of patched RC beam without web reinforcements with a particular interest to compare the shear failure behaviour of patched RC beam and normal RC beam. The patch repair material used in this research was unsaturated polyester resin (UPR) mortar. The results indicate that the initial diagonal cracks leading to shear failure of patched RC beam occur at a lower level of loading. However, the patched RC beam could carry a greater load before the diagonal crack propagates in length and width causing the beam to fail in shear.


2003 ◽  
Vol 19 (4) ◽  
pp. 863-895 ◽  
Author(s):  
Leslie M. Megget

The seismic performance of eleven half-scale and three full-sized reinforced concrete beam-column knee joints was tested under inelastic cyclic loading. Twelve joints were designed to the current New Zealand Concrete Standard, NZS 3101 while the remaining two were designed to the 1964 New Zealand Code, which contained few seismic provisions. All the 1995 designs approached or exceeded their nominal beam strengths in both directions and only degraded in strength at displacement ductility factors greater than 2, while the 1960 designs failed prematurely in joint shear at about 70% of the beam nominal strengths. Many of the half-scale joints failed when cover concrete split off in the joint zone, allowing loss of anchorage and slip of the top beam bars. Two full-scale joints were designed to carry the maximum specified code joint shear stress (0.2 fc′), and one subsequently failed due to joint shear when the concrete compressive strength did not reach the specified design value. A third full-size joint was tested with distributed beam reinforcement. This joint performed in a ductile manner to displacement ductility 4 but failed in the second cycle at that displacement, due to buckling of several rows of beam bars.


2018 ◽  
Vol 20 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Patricia A. Sarmiento ◽  
Benjamín Torres ◽  
Daniel M. Ruiz ◽  
Yezid A. Alvarado ◽  
Isabel Gasch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document