Numerical Study on the Aerodynamic Design of Circumferential- and Axial-Leaned and Bowed Turbine Blades

Author(s):  
Marcin Figat ◽  
Agnieszka Kwiek

This paper presents the results of a numerical study of the aerodynamic shape of the Rocket Plane LEX. The Rocket Plane is a main part of the Modular Airplane System – MAS; a special vehicle devoted to suborbital tourist flights. The Rocket Plane was designed for subsonic and supersonic flight conditions. Therefore, the impact of the Mach number should be considered during the aerodynamic design of the Rocket Plane. The main goal of the investigation was to determine the sensitivity of the Rocket Plane aerodynamic characteristics to the Mach number during the optimisation of the LEX geometry. The paper includes results of the optimisation process for Mach number from the range Ma = 0.5 to Ma = 2.5. These results reveal that the aerodynamic characteristics of models optimised for the subsonic and transonic regime of Mach numbers (up to Ma = 1) were also improved for the supersonic speed regime. However, in the case of models optimised for the supersonic flight regime the aerodynamic characteristics in subsonic flight regime, are inferior compared to the model before the optimisation process.


2021 ◽  
Vol 5 (9) ◽  
pp. 234
Author(s):  
Marwane Rouway ◽  
Mourad Nachtane ◽  
Mostapha Tarfaoui ◽  
Nabil Chakhchaoui ◽  
Lhaj El Hachemi Omari ◽  
...  

Biocomposites based on thermoplastic polymers and natural fibers have recently been used in wind turbine blades, to replace non-biodegradable materials. In addition, carbon nanofillers, including carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), are being implemented to enhance the mechanical performance of composites. In this work, the Mori–Tanaka approach is used for homogenization of a polymer matrix reinforced by CNT and GNP nanofillers for the first homogenization, and then, for the second homogenization, the effective matrix was used with alfa and E-glass isotropic fibers. The objective is to study the influence of the volume fraction Vf and aspect ratio AR of nanofillers on the elastic properties of the composite. The inclusions are considered in a unidirectional and random orientation by using a computational method by Digimat-MF/FE and analytical approaches by Chamis, Hashin–Rosen and Halpin–Tsai. The results show that CNT- and GNP-reinforced nanocomposites have better performance than those without reinforcement. Additionally, by increasing the volume fraction and aspect ratio of nanofillers, Young’s modulus E increases and Poisson’s ratio ν decreases. In addition, the composites have enhanced mechanical characteristics in the longitudinal orientation for CNT- reinforced polymer and in the transversal orientation for GNP-reinforced polymer.


2017 ◽  
Vol 45 (4) ◽  
pp. 647-660 ◽  
Author(s):  
Biadgo Mulugeta ◽  
Aynekulu Gerawork

2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


2011 ◽  
Vol 35 (8) ◽  
pp. 781-787 ◽  
Author(s):  
Joo-Hoon Park ◽  
Won-Suk Lee ◽  
You-Hwan Shin ◽  
Kwang-Ho Kim ◽  
Yoon-Pyo Lee ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 1215-1223 ◽  
Author(s):  
M. Tarfaoui ◽  
M. Nachtane ◽  
O.R. Shah ◽  
H. Boudounit

Author(s):  
Moon-Young Cho ◽  
Hyeon-Seok Seo ◽  
Youn-Jea Kim

In this study, the effect of a row of double-jet film-cooling hole configurations on the thermal-flow characteristics of gas turbine blades was examined. To investigate the effect of the interference of anti-kidney vortices, the ratios of the pitch distance and hole diameter (P/d=5, 6.25, 8.333) were considered with two different compound angles (λ=0°, 4°). The film cooling performance and the generated losses were studied. Then, the relevant mechanisms were identified and explained. A numerical study was performed using ANSYS CFX 14.5 with the shear stress transport (SST) turbulent model. The blowing ratio was kept at a constant value of M=1.5. The film cooling effectiveness and temperature distribution are graphically depicted with various geometrical configurations.


Author(s):  
Sarwesh Parbat ◽  
Li Yang ◽  
Minking Chyu ◽  
Sin Chien Siw ◽  
Ching-Pang Lee

Abstract The strive to achieve increasingly higher efficiencies in gas turbine power generation has led to a continued rise in the turbine inlet temperature. As a result, novel cooling approaches for gas turbine blades are necessary to maintain them within the material’s thermal mechanical performance envelope. Various internal and external cooling technologies are used in different parts of the blade airfoil to provide the desired levels of cooling. Among the different regions of the blade profile, the trailing edge (TE) presents additional cooling challenges due to the thin cross section and high thermal loads. In this study, a new wavy geometry for the TE has been proposed and analyzed using steady state numerical simulations. The wavy TE structure resembled a sinusoidal wave running along the span of the blade. The troughs on both pressure side and suction side contained the coolant exit slots. As a result, consecutive coolant exit slots provided an alternating discharge between the suction side and the pressure side of the blade. Steady state conjugate heat transfer simulations were carried out using CFX solver for four coolant to mainstream mass flow ratios of 0.45%, 1%, 1.5% and 3%. The temperature distribution and film cooling effectiveness in the TE region were compared to two conventional geometries, pressure side cutback and centerline ejection which are widely used in vanes and blades for both land-based and aviation gas turbine engines. Unstructured mesh was generated for both fluid and solid domains and interfaces were defined between the two domains. For turbulence closer, SST-kω model was used. The wall y+ was maintained < 1 by using inflation layers at all the solid fluid interfaces. The numerical results depicted that the alternating discharge from the wavy TE was able to form protective film coverage on both the pressure and suction side of the blade. As a result, significant reduction in the TE metal was observed which was up to 14% lower in volume averaged temperature in the TE region when compared to the two baseline conventional configurations.


Author(s):  
Alexander Ladino

Kinetic energy in the oceans offers an important and promising source of renewable energy which can be exploited by marine current turbines (MCT). One of the key issues related with design of MCT’s is the cavitation inception along turbine blades. Cavitation occurrence in MCT’s blades generates erosion and poor power performance with similar effect in the hydraulic turbine case. In this work, a numerical investigation using the vorticity–stream function code XFOIL in order to study cavitation characteristics in NACA 4 series profiles was performed. The study was developed systematically starting from NACA 4415 profiles and varying independently camber percentage, camber position and thickness. Other study carried out was the effect of trailing edge deflection in the cavitation bucket. Results show a symmetrical increment in cavitation free zone for profiles with increasing thickness. Also for camber increment, the cavitation free zone is incremented, especially at high angles of attack. For variation of camber percentage, increasing camber produces the cavitation bucket moves to high lift zone which suggest that the profile could cavitate at low and negative Cl in wide range of cavitation numbers. Finally the effect of trailing edge deflection produces a slight increment in cavitation free zone which is similar to the effect of camber increment. Also, the trailing edge deflection shows that a same Cl can be achieved with lower angle of attack and lower pressure coefficient compared with the standard profile, constituting a desired behavior from the cavitation point of view. Finally, local dimensionless correlations were developed which can be used for parametric studies of cavitation performance of MCT’s in the design stage.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Cosimo Maria Mazzoni ◽  
Richard Ahlfeld ◽  
Budimir Rosic ◽  
Francesco Montomoli

This paper presents a numerical study of the impact of tip gap uncertainties in a multistage turbine. It is well known that the rotor gap can change the gas turbine efficiency, but the impact of the random variation of the clearance height has not been investigated before. In this paper, the radial seals clearance of a datum shroud geometry, representative of steam turbine industrial practice, was systematically varied and numerically tested by means of unsteady computational fluid dynamics (CFD). By using a nonintrusive uncertainty quantification (UQ) simulation based on a sparse arbitrary moment-based approach, it is possible to predict the radial distribution of uncertainty in stagnation pressure and yaw angle at the exit of the turbine blades. This work shows that the impact of gap uncertainties propagates radially from the tip toward the hub of the turbine, and the complete span is affected by a variation of the rotor tip gap. This amplification of the uncertainty is mainly due to the low-aspect ratio of the turbine, and a similar behavior is expected in high pressure (HP) turbines.


Sign in / Sign up

Export Citation Format

Share Document