IFN-γ ELISPOT Assay Validation

Author(s):  
Manjula Reddy ◽  
Jackson Wong ◽  
Charles Pendley ◽  
Uma Prabhakar
Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 312
Author(s):  
Eva Wagner-Drouet ◽  
Daniel Teschner ◽  
Christine Wolschke ◽  
Kerstin Schäfer-Eckart ◽  
Johannes Gärtner ◽  
...  

Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recipients using a standardized IFN-γ ELISpot assay. Paired qualitative test results showed an overall 74.4% concordance. Discordant results were mainly due to low-response tests, with one exception. One patient with early CMV reactivation and graft-versus-host disease, sustained CMV DNAemia and high CD8+ counts showed successive negative protein-based ELISpot results but a high and sustained response to IE-1 peptides. Our results suggest that the response to exogenous proteins, which involves their uptake and processing by antigen-presenting cells, more closely reflects the physiological response to CMV infection, while the response to exogenous peptides may lead to artificial in vitro T-cell responses, especially in strongly immunosuppressed patients.


2008 ◽  
Vol 15 (10) ◽  
pp. 1625-1628 ◽  
Author(s):  
Leonardo Potenza ◽  
Patrizia Barozzi ◽  
Giulio Rossi ◽  
Giovanni Palazzi ◽  
Daniela Vallerini ◽  
...  

ABSTRACT A child with acute myeloid leukemia presented with multiple liver lesions mimicking hepatosplenic candidiasis during the neutropenic phase following the induction chemotherapy. All the available diagnostic tools showed repeatedly negative results, including galactomannan. An enzyme-linked immunospot (ELISPOT) assay showed a high number of Aspergillus-specific T cells producing interleukin-10 [TH2(IL-10)] and a low number of Aspergillus-specific T cells producing gamma interferon [TH1(IFN-γ)], revealing invasive aspergillosis (IA) before the confirmatory biopsy. A progressive skewing from the predominance of TH2(IL-10) to a predominance of TH1(IFN-γ) was observed close to the complete resolution of the infection and foreshadowed the outcome. The ELISPOT assay holds promise for diagnosing pediatric IA.


Author(s):  
Atsushi Satomura ◽  
Yoichi Oikawa ◽  
Akifumi Haisa ◽  
Seiya Suzuki ◽  
Shunpei Nakanishi ◽  
...  

Abstract Context Unprovoked A−β+ ketosis-prone type 2 diabetes (KPD) is characterized by the sudden onset of diabetic ketosis/ketoacidosis (DK/DKA) without precipitating factors, negative anti-islet autoantibodies (“A−”), and preservation of β-cell function (“β+”) after recovery from DKA. Although this phenotype often appears with acute hyperglycemia and DK/DKA just like acute-onset type 1 diabetes (AT1D), the involvement of anti-islet immune responses remains unknown. Objective We sought to clarify the immunological role of insulin-associated molecules in unprovoked A−β+ KPD. Methods In this cross-sectional study, blood samples from 75 participants (42 with AT1D and 33 with KPD) were evaluated for interferon (IFN)-γ-secreting peripheral blood mononuclear cells (PBMCs) reactive to four insulin B-chain amino acid 9–23-related peptides (B:9–23rPep) using an enzyme-linked immunospot (ELISpot) assay. Results Overall, 36.4% (12/33) of KPD participants showed positive IFN-γ ELISpot assay results; the positivity rate in KPD was similar to that in AT1D (38.1%; 16/42) and significantly higher than the previously reported rate in type 2 diabetes (8%; 2/25; P < 0.0167). Moreover, B:9–23rPep-specific IFN-γ-producing PBMC frequency was negatively correlated with age and ad lib serum C-peptide levels in all KPD participants and positively correlated with HbA1c level in KPD participants with positive IFN-γ ELISpot results. Conclusions These findings suggest the involvement of B:9–23rPep-specific IFN-γ-related immunoreactivity in the pathophysiology of some unprovoked A−β+ KPD. Moreover, increased immunoreactivity may reflect transiently decreased β-cell function and increased disease activity at the onset of DK/DKA, thereby playing a key role in DK/DKA development in this KPD phenotype.


2008 ◽  
Vol 15 (7) ◽  
pp. 1042-1053 ◽  
Author(s):  
Bruce D. Forrest ◽  
Michael W. Pride ◽  
Andrew J. Dunning ◽  
Maria Rosario Z. Capeding ◽  
Tawee Chotpitayasunondh ◽  
...  

ABSTRACT The highly sensitive gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay permits the investigation of the role of cell-mediated immunity (CMI) in the protection of young children against influenza. Preliminary studies of young children confirmed that the IFN-γ ELISPOT assay was a more sensitive measure of influenza memory immune responses than serum antibody and that among seronegative children aged 6 to <36 months, an intranasal dose of 107 fluorescent focus units (FFU) of a live attenuated influenza virus vaccine (CAIV-T) elicited substantial CMI responses. A commercial inactivated influenza virus vaccine elicited CMI responses only in children with some previous exposure to related influenza viruses as determined by detectable antibody levels prevaccination. The role of CMI in actual protection against community-acquired, culture-confirmed clinical influenza by CAIV-T was investigated in a large randomized, double-blind, placebo-controlled dose-ranging efficacy trial with 2,172 children aged 6 to <36 months in the Philippines and Thailand. The estimated protection curve indicated that the majority of infants and young children with ≥100 spot-forming cells/106 peripheral blood mononuclear cells were protected against clinical influenza, establishing a possible target level of CMI for future influenza vaccine development. The ELISPOT assay for IFN-γ is a sensitive and reproducible measure of CMI and memory immune responses and contributes to establishing requirements for the future development of vaccines against influenza, especially those used for children.


2002 ◽  
Vol 70 (3) ◽  
pp. 1468-1474 ◽  
Author(s):  
W. H. H. Reece ◽  
M. Plebanski ◽  
P. Akinwunmi ◽  
P. Gothard ◽  
K. L. Flanagan ◽  
...  

ABSTRACT T-cell responses directed against the circumsporozoite protein (CS) of Plasmodium falciparum can mediate protection against malaria. We determined the frequency of T cells reactive to different regions of the CS in the blood of donors naturally exposed to P. falciparum by examining T1 (gamma interferon [IFN-γ] ELISPOT assay), T2 (interleukin 4 [IL-4] ELISPOT assay), and proliferative T-cell responses. The proliferative responses were weak, which confirmed previous observations. The responses to the CS in the IL-4 and IFN-γ ELISPOT assays were also weak (<40 responding cells per 106 cells), much weaker than the response to the purified protein derivative of Mycobacterium tuberculosis in the same donors. Moreover, a response in one assay could not be used to predict a response in either of the other assays, suggesting that although these assays may measure different responding cells, all of the responses are weakly induced by natural exposure. Interestingly, the two different study populations used had significantly different T1 and T2 biases in their responses in the C terminus of the protein, suggesting that the extent of P. falciparum exposure can affect regulation of the immune system.


2000 ◽  
Vol 7 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Tadao Asai ◽  
Walter J. Storkus ◽  
Theresa L. Whiteside

ABSTRACT Frequencies of vaccine-responsive T-lymphocyte precursors in peripheral blood mononuclear cells (PBMC) prior to and after administration of peptide-based vaccines in patients with cancer can be measured by limiting-dilution assays (LDA) or by ELISPOT assays. We have used a modified version of the ELISPOT assay to monitor changes in the frequency of gamma interferon (IFN-γ)-producing T cells in a population of lymphocytes responding to a relevant peptide or a nonspecific stimulator, such as phorbol myristate acetate-ionomycin. Prior to its use for monitoring of patient samples, the assay was validated and found to be comparable to the LDA performed in parallel, using tumor-reactive cytolytic T-lymphocyte (CTL) lines. The sensitivity of the ELISPOT assay was found to be 1/100,000 cells, with an interassay coefficient of variation of 15%, indicating that it could be reliably used for monitoring of changes in the frequency of IFN-γ-secreting responder cells in noncultured or cultured lymphocyte populations. To establish that the assay is able to detect the T-cell precursor cells responsive to the vaccine, we used CD8+T-cell populations positively selected from PBMC of HLA-A2+patients with metastatic melanoma, who were treated with dendritic cell-based vaccines containing gp100, MELAN-A/MART-1, tyrosinase, and influenza virus matrix peptides. The frequency of peptide-specific responder T cells ranged from 0 to 1/2,600 before vaccination and increased by at least 1 log unit after vaccination in two patients, one of whom had a clinical response to the vaccine. However, no increases in the frequency of peptide-responsive T cells were observed in noncultured PBMC or PBMC cultured in the presence of the relevant peptides after the melanoma patients enrolled in another trial were treated with the intramuscular peptide vaccine plus MF59 adjuvant. Thus, while the ELISPOT assay was found to be readily applicable to assessments of frequencies of CTL precursors of established CTL lines and ex vivo-amplified PBMC, its usefulness for monitoring of fresh PBMC in patients with cancer was limited. In many of these patients antitumor effector T cells are present at frequencies of lower than 1/100,000 in the peripheral circulation. Serial monitoring of such patients may require prior ex vivo amplification of specific precursor cells.


2013 ◽  
Vol 81 (10) ◽  
pp. 3709-3720 ◽  
Author(s):  
B. Ferraro ◽  
K. T. Talbott ◽  
A. Balakrishnan ◽  
N. Cisper ◽  
M. P. Morrow ◽  
...  

ABSTRACTA vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection againstPlasmodium falciparummalaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets fourP. falciparumantigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered usingin vivoelectroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4+and CD8+T cell compartments. Furthermore, hepatic CD8+lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8+granzyme B+T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.


BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (11) ◽  
Author(s):  
Michelle Wykes ◽  
Laurent Renia
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document