scholarly journals Inducing Humoral and Cellular Responses to Multiple Sporozoite and Liver-Stage Malaria Antigens Using Exogenous Plasmid DNA

2013 ◽  
Vol 81 (10) ◽  
pp. 3709-3720 ◽  
Author(s):  
B. Ferraro ◽  
K. T. Talbott ◽  
A. Balakrishnan ◽  
N. Cisper ◽  
M. P. Morrow ◽  
...  

ABSTRACTA vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection againstPlasmodium falciparummalaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets fourP. falciparumantigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered usingin vivoelectroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4+and CD8+T cell compartments. Furthermore, hepatic CD8+lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8+granzyme B+T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.

1999 ◽  
Vol 6 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Najib Aziz ◽  
Parunag Nishanian ◽  
Ronald Mitsuyasu ◽  
Roger Detels ◽  
John L. Fahey

ABSTRACT Cytokines and soluble immune activation markers that reflect cytokine activities in vivo are increasingly being measured in plasma, serum, and other body fluids. They provide useful diagnostic and prognostic information as well as insight into disease pathogenesis. Assays of neopterin, β2-microglobulin, soluble interleukin-2 receptor, and soluble tumor necrosis factor receptor type II as well as of the cytokines tumor necrosis factor alpha and gamma interferon (IFN-γ) were evaluated by using serum and plasma samples of human immunodeficiency virus (HIV)-positive and HIV-negative subjects. Many factors were found to influence the outcomes of these assays. Substantial differences in apparent levels of analytes were frequently found when enzyme-linked immunosorbent assay (ELISA) kits from different manufacturers were used. In some cases, differences were found in the standards provided by separate manufacturers. Furthermore, the analytic results from different lots of ELISA kits supplied by single manufacturers differed by as much as 50%. The need for uniformity in the standards for quantitative assays was clearly illustrated. International reference standards are available for cytokines but not for soluble cytokine receptors or soluble activation markers. Marker levels in serum or in plasma were similar except those for IFN-γ. Most of the analytes were stable under several storage conditions. Thus, batch testing of frozen stored samples is feasible. The findings indicate that for longitudinal studies, the levels of cytokines and immune activation markers in plasma or serum should be measured by using preverified reagents from one manufacturer. The quality of laboratory performance can have an impact on clinical relevance. Proficiency testing and external quality assurance programs can help to develop the needed consensus.


2014 ◽  
Vol 53 (2) ◽  
pp. 504-510 ◽  
Author(s):  
Yun Hee Jeong ◽  
Yun-Gyoung Hur ◽  
Hyejon Lee ◽  
Sunghyun Kim ◽  
Jang-Eun Cho ◽  
...  

Mycobacterium tuberculosisis the major causative agent of tuberculosis (TB). The gamma interferon (IFN-γ) release assay (IGRA) has been widely used to diagnose TB by testing cell-mediated immune responses but has no capacity for distinguishing between active TB and latent TB infection (LTBI). This study aims to identify a parameter that will help to discriminate active TB and LTBI. Whole-blood samples from 33 active TB patients, 20 individuals with LTBI, and 26 non-TB controls were applied to the commercial IFN-γ release assay, QuantiFERON-TB Gold In-Tube, and plasma samples were analyzed for interleukin-2 (IL-2), IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-alpha (TNF-α), IFN-γ, monokine induced by IFN-γ (MIG), interferon gamma inducible protein 10 (IP-10), interferon-inducible T cell alpha chemoattractant (I-TAC), and monocyte chemoattractant protein 1 (MCP-1) by using a commercial cytometric bead array. TheMycobacterium tuberculosisantigen-specific production of most of the assayed cytokines and chemokines was higher in the active TB than in the LTBI group. The mitogen-induced responses were lower in the active TB than in the LTBI group. When the ratio of TB-specific to mitogen-induced responses was calculated, IL-2, IL-6, IL-10, IL-13, TNF-α, IFN-γ, MIG, and IP-10 were more useful in discriminating active TB from LTBI. In particular, most patients showed higher IP-10 production toMycobacterium tuberculosisantigens than to mitogen at the individual level, and the ratio for IP-10 was the strongest indicator of active infection versus LTBI with 93.9% sensitivity and 90% specificity. In conclusion, the ratio of the TB-specific to the mitogen-induced IP-10 responses showed the most promising accuracy for discriminating active TB versus LTBI and should be further studied to determine whether it can serve as a biomarker that might help clinicians administer appropriate treatments.


2010 ◽  
Vol 18 (1) ◽  
pp. 184-186 ◽  
Author(s):  
Xiaoyi Wang ◽  
Zuyun Wang ◽  
Zhaobiao Guo ◽  
Baiqing Wei ◽  
Fuzhang Tian ◽  
...  

ABSTRACTThe serum levels of interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, IL-6, and IL-10 of pneumonic plague patients were determined by enzyme-linked immunosorbent assay. IL-6 was the only elevated cytokine in the patients, and its level increased with a clear time course, indicating that IL-6 might be a prognostic marker for predicting the progression of plague.


2000 ◽  
Vol 74 (9) ◽  
pp. 4429-4432 ◽  
Author(s):  
Steven M. Varga ◽  
Raymond M. Welsh

ABSTRACT Analysis of C57BL/6 mice acutely infected with lymphocytic choriomeningitis virus (LCMV) by using intracellular cytokine staining revealed a high frequency (2 to 10%) of CD4+ T cells secreting the Th1-associated cytokines interleukin-2 (IL-2), gamma interferon (IFN-γ), and tumor necrosis factor alpha, with no concomitant increase in the frequency of CD4+ T cells secreting the Th2-associated cytokines IL-4, IL-5, and IL-10 following stimulation with viral peptides. In LCMV-infected C57BL/6 CD8−/− mice, more than 20% of the CD4+ T cells secreted IFN-γ after viral peptide stimulation, whereas less than 1% of the CD4+ T cells secreted IL-4 under these same conditions. Mice persistently infected with a high dose of LCMV clone 13 also generated a virtually exclusive Th1 response. Thus, LCMV induces a much more profound virus-specific CD4+ T-cell response than previously recognized, and it is dramatically skewed to a Th1 phenotype.


2007 ◽  
Vol 75 (8) ◽  
pp. 4006-4011 ◽  
Author(s):  
Dhammika H. M. L. P. Navarathna ◽  
Kenneth W. Nickerson ◽  
Gerald E. Duhamel ◽  
Thomas R. Jerrels ◽  
Thomas M. Petro

ABSTRACT Candida albicans, a dimorphic fungus composed of yeast and mycelial forms, is the most common human fungal pathogen. Th1 cytokines such as interleukin-2 (IL-2), gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α), which are induced by macrophage IL-12, are critical to resistance against systemic candidiasis, while Th2 cytokines such as IL-4 and IL-5 are less critical. Farnesol is a quorum-sensing molecule produced by C. albicans that controls the formation of mycelia but is also a virulence factor. To determine whether farnesol enhances the virulence of C. albicans by modulating the production of Th1 and Th2 cytokines, mice were pretreated with farnesol prior to intravenous infection with a sublethal dose of farnesol-producing C. albicans. Production of IL-2, IL-4, IL-5, TNF-α, IFN-γ, and IL-12 was evaluated by bead-array flow cytometry and enzyme-linked immunosorbent assay. Mice exhibited an elevation in serum TNF-α levels at 48 h and an elevation in IFN-γ and IL-12 levels at 6 to 12 h after infection with C. albicans. Pretreatment with farnesol significantly reduced the elevation of both IFN-γ and IL-12 but not TNF-α. In contrast, mice pretreated with farnesol exhibited an unexpected elevation in IL-5 levels. To determine whether farnesol has a direct effect on macrophage production of IL-12, peritoneal macrophages were pretreated with farnesol prior to stimulation with IFN-γ plus lipopolysaccharide (LPS). Farnesol inhibited production of both IL-12 p40 and p70 from IFN-γ/LPS-stimulated macrophages. Therefore, the role of farnesol in systemic candidiasis is likely due to its ability to inhibit the critical Th1 cytokines IFN-γ and IL-12 and perhaps to enhance a Th2 cytokine, IL-5.


2014 ◽  
Vol 82 (9) ◽  
pp. 3775-3782 ◽  
Author(s):  
Lyticia A. Ochola ◽  
Cyrus Ayieko ◽  
Lily Kisia ◽  
Ng'wena G. Magak ◽  
Estela Shabani ◽  
...  

ABSTRACTIndividuals naturally exposed toPlasmodium falciparumlose clinical immunity after a prolonged lack of exposure.P. falciparumantigen-specific cytokine responses have been associated with protection from clinical malaria, but the longevity ofP. falciparumantigen-specific cytokine responses in the absence of exposure is not well characterized. A highland area of Kenya with low and unstable malaria transmission provided an opportunity to study this question. The levels of antigen-specific cytokines and chemokines associated in previous studies with protection from clinical malaria (gamma interferon [IFN-γ], interleukin-10 [IL-10], and tumor necrosis factor alpha [TNF-α]), with increased risk of clinical malaria (IL-6), or with pathogenesis of severe disease in malaria (IL-5 and RANTES) were assessed by cytometric bead assay in April 2008, October 2008, and April 2009 in 100 children and adults. During the 1-year study period, none had an episode of clinicalP. falciparummalaria. Two patterns of cytokine responses emerged, with some variation by antigen: a decrease at 6 months (IFN-γ and IL-5) or at both 6 and 12 months (IL-10 and TNF-α) or no change over time (IL-6 and RANTES). These findings document thatP. falciparumantigen-specific cytokine responses associated in prior studies with protection from malaria (IFN-γ, TNF-α, and IL-10) decrease significantly in the absence ofP. falciparumexposure, whereas those associated with increased risk of malaria (IL-6) do not. The study findings provide a strong rationale for future studies of antigen-specific IFN-γ, TNF-α, and IL-10 responses as biomarkers of increased population-level susceptibility to malaria after prolonged lack ofP. falciparumexposure.


1995 ◽  
Vol 83 (6) ◽  
pp. 1038-1044 ◽  
Author(s):  
Terry Lichtor ◽  
Roberta P. Glick ◽  
Tae Sung Kim ◽  
Roger Hand ◽  
Edward P. Cohen

✓ A novel approach toward the treatment of glioma was developed in a murine model. The genes for both interleukin-2 (IL-2) and interferon-γ (IFN-γ) were first transfected into a mouse fibroblast cell line that expresses defined major histocompatibility complex (MHC) determinants (H—2k). The double cytokine—secreting cells were then cotransplanted intracerebrally with the Gl261 murine glioma cell line into syngeneic C57BL/6 mice (H—2b) whose cells differed at the MHC from the cellular immunogen. The results indicate that the survival of mice with glioma injected with the cytokine-secreting allogeneic cells was significantly prolonged, relative to the survival of mice receiving equivalent numbers of glioma cells alone. Using a standard 51Cr-release assay, the specific release of isotope from labeled Gl261 cells coincubated with spleen cells from mice injected intracerebrally with the glioma cells and the cytokine-secreting fibroblasts was significantly higher than the release of isotope from glioma cells coincubated with spleen cells from nonimmunized mice. The cellular antiglioma response was mediated by natural killer/lymphokine-activated killer and Lyt-2.2+ (CD8+) cells. The increased survival of mice with glioma and the specific immunocytotoxic responses after immunization with fibroblasts modified to secrete both IL-2 and IFN-γ indicate the potential of an immunotherapeutic approach to gliomas with cytokine-secreting cells.


2017 ◽  
Vol 24 (11) ◽  
Author(s):  
Ahreum Kim ◽  
Yun-Gyoung Hur ◽  
Sunwha Gu ◽  
Sang-Nae Cho

ABSTRACT The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.


2017 ◽  
Vol 85 (7) ◽  
Author(s):  
Chiara Ripamonti ◽  
Lisa R. Bishop ◽  
Joseph A. Kovacs

ABSTRACT Pneumocystis remains an important pathogen of immunosuppressed patients, causing a potentially life-threatening pneumonia. Despite its medical importance, the immune responses required to control infection, including the role of interleukin-17 (IL-17), which is important in controlling other fungal infections, have not been clearly defined. Using flow cytometry and intracellular cytokine staining after stimulation with phorbol myristate acetate and ionomycin, we examined gamma interferon (IFN-γ), IL-4, IL-5, and IL-17 production by lung lymphocytes in immunocompetent C57BL/6 mice over time following infection with Pneumocystis murina. We also examined the clearance of Pneumocystis infection in IL-17A-deficient mice. The production of both IFN-γ and IL-17 by pulmonary lymphocytes increased during infection, with maximum production at approximately days 35 to 40, coinciding with peak Pneumocystis levels in the lungs, while minimal changes were seen in IL-4- and IL-5-positive cells. The proportion of cells producing IFN-γ was consistently higher than for cells producing IL-17, with peak levels of ∼25 to 30% of CD3+ T cells for the former compared to ∼15% for the latter. Both CD4+ T cells and γδ T cells produced IL-17. Administration of anti-IFN-γ antibody led to a decrease in IFN-γ-positive cells, and an increase in IL-5-positive cells, but did not impact clearance of Pneumocystis infection. Despite the increases in IL-17 production during infection, IL-17A-deficient mice cleared Pneumocystis infection with kinetics similar to C57BL/6 mice. Thus, while IL-17 production in the lungs is increased during Pneumocystis infection in immunocompetent mice, IL-17A is not required for control of Pneumocystis infection.


2015 ◽  
Vol 22 (3) ◽  
pp. 258-266 ◽  
Author(s):  
Kamlesh Bhatt ◽  
Sheetal Verma ◽  
Jerrold J. Ellner ◽  
Padmini Salgame

ABSTRACTA major impediment to tuberculosis (TB) vaccine development is the lack of reliable correlates of immune protection or biomarkers that would predict vaccine efficacy. Gamma interferon (IFN-γ) produced by CD4+T cells and, recently, multifunctional CD4+T cells secreting IFN-γ, tumor necrosis factor (TNF), and interleukin-2 (IL-2) have been used in vaccine studies as a measurable immune parameter, reflecting activity of a vaccine and potentially predicting protection. However, accumulating experimental evidence suggests that host resistance againstMycobacterium tuberculosisinfection is independent of IFN-γ and TNF secretion from CD4+T cells. Furthermore, the booster vaccine MVA85A, despite generating a high level of multifunctional CD4+T cell response in the host, failed to confer enhanced protection in vaccinated subjects. These findings suggest the need for identifying reliable correlates of protection to determine the efficacy of TB vaccine candidates. This article focuses on alternative pathways that mediateM. tuberculosiscontrol and their potential for serving as markers of protection. The review also discusses the significance of investigating the natural human immune response toM. tuberculosisto identify the correlates of protection in vaccination.


Sign in / Sign up

Export Citation Format

Share Document