Temperature‐Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrica Reinforced Biochar‐Tailored Vinyl Ester Composite

Author(s):  
Rajendran Deepak Joel Johnson ◽  
Veerasimman Arumugaprabu ◽  
Rajini Nagarajan ◽  
Fernando G. Souza ◽  
Vigneswaran Shanmugam
2017 ◽  
Vol 25 (6) ◽  
pp. 463-470 ◽  
Author(s):  
Honglin Luo ◽  
Dehui Ji ◽  
Guangyao Xiong ◽  
Lingling Xiong ◽  
Chuanyin Zhang ◽  
...  

The relatively poor mechanical properties of corn fibre (CF) and its green composites have hindered its applications. In this work, sisal fibre (SF) was hybridised with CF to reinforce polylactide (PLA) composites (CF/SF/PLA). The static mechanical properties such as tensile, flexural and impact strengths and dynamic mechanical properties such as storage modulus (E’), damping behaviour (tan δ), glass transition temperature (Tg) of the hybrid composites were determined and, for the first time, hybrid effects on both static and dynamic mechanical properties were evaluated. It is found that the tensile, flexural, impact strengths, and E’ and tan δ peak height, as well as the hybrid effects change with hybrid ratio (SF:CF). It is demonstrated that a hybrid composite with desirable static and dynamic mechanical properties can be produced by optimising the fibre:hybrid ratio.


2021 ◽  
Vol 40 (4) ◽  
pp. 639-647
Author(s):  
A.A. Alabi ◽  
A.I. Obi ◽  
D.M. Kulla ◽  
S.M. Tahir

The quest to discover more and to enhance the qualities of agro-residue for use as natural reinforcement of polymers continues to attract the attention of researchers because of the environmental friendliness. Hyphaene thebaica also known as doum palm is a fruit tree native to the Nile in Egypt and found in abundance in many parts of Africa. Doum palm fruit contains probably the hardest and toughest known nut. The doum palm nuts (DPN) are the most under-used hard-nut despite their abundance in nature. This study presents the potential doum palm nut particles (DPNp) as natural reinforcement for high density polyethylene (HDPE). Properties of DPN such as density, hardness and weight loss due to heating were determined. HDPE/DPNp composites were produced by reinforcing HDPE with 30, 35, 40 and 45% DPNp particles of two different sizes. The particle sizes 600 μm and 710 μm led to classifying the composites as X-composite and Y-composite respectively. The static and dynamic mechanical properties of the composites were determined and compared with the those of pure HDPE. Results showed that HDPE and DPNp can be formed into light and attractive components. Loading HPDE with DPNp significantly improve static mechanical properties of HDPE such as tensile strength, hardness, stiffness and resistance to impact failure by 50%, 200%, 800% and 1500% respectively. The HDPE/DPNp composites also had better dynamic mechanical properties. The ability of the composites to maintain load bearing capacity under dynamic conditions was superior to that of HDPE.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


2017 ◽  
Vol 90 (4) ◽  
pp. 611-620
Author(s):  
An Dong ◽  
Zhang Zhiyi ◽  
Jia Haixiang ◽  
Shou Jinquan ◽  
Zhang Huan ◽  
...  

ABSTRACT The influence of the structure and size of carbon black on the static mechanical and dynamic mechanical properties of filled natural rubber (NR) compounds is investigated in detail. A new process for the production of carbon black master batches with enhanced mechanical properties has been developed. The unit operations in the process are the preparation of carbon black slurry in the presence of a suitable surfactant, addition of the slurry to the fresh NR latex under stirring, coagulation of the mixture by the addition of acid, dewatering of the coagulum, and drying to obtain carbon black–incorporated NR. The competence of the new technique is established by comparing the characteristics of the carbon black–incorporated NR by the mill mixing process (control). The mechanical properties, including tensile strength, modulus, tear strength, and hardness, are superior for the vulcanization prepared by the latex-suspension coagulation techniques. The improvement shown by the vulcanization prepared by the latex-suspension coagulation techniques was attributed to the better filler dispersion evidenced from the scanning electron micrograph along with the attainment of a higher level of vulcanization.


2015 ◽  
Vol 641 ◽  
pp. 17-23
Author(s):  
Maciej Motyka ◽  
Tomasz Tokarski ◽  
Waldemar Ziaja ◽  
Mateusz Wedrychowicz

Ultra-fine grained metallic materials are characterized by higher mechanical properties comparing with their conventional equivalents. However increase in strength under static load is not always accompanied by improved fatigue behaviour. Previous investigations on submicrocrystalline RS442 aluminium alloy produced by plastic consolidation of rapidly solidified flakes in the extrusion process revealed increase in its high cycle fatigue bending strength caused by annealing at 450°C. The aim of present studies was to evaluate the influence of heat treatment – also precipitation hardening – on static mechanical properties (hardness, tensile and yield strength) and fatigue strength of the alloy determined in high cycle stress controlled bending tests. Correlation between microstructure, static mechanical properties and fatigue behaviour was analyzed too.


Sign in / Sign up

Export Citation Format

Share Document