Multiterminal Neuromorphic Devices with Cognitive Behaviors

2021 ◽  
pp. 91-123
Author(s):  
Li Qiang Zhu ◽  
Jia Cheng Cai ◽  
Zheng Yu Ren ◽  
Wen Xiong ◽  
Qing Wan
Keyword(s):  
2019 ◽  
Author(s):  
Naveed Shibli ◽  
Fariha Zahid

<p></p><p>Human beings live in various places. Place affects human being. A few experiments were conducted on 200 students, including 100 male and 100 female. Participants were the students of a selected school. Place effect on participants’ motor, cognitive behaviors and academic confidence studied. The subjects were divided into two groups. Group-A was consisted of students those were in the school for more than 5 years, whereas in group-B students with less than 5 years stay in the school were there. It was assumed that duration as stay in the school representing place effect may provide some relationship link? Following instruments were used; Taping Board (Electronic) 10 trails for both groups as motor performance, Star Mirror Drawing (Electronics) 10 trails with preferred hand both groups for transfer as cognition and Academic Self-efficacy Scale for all groups for academic confidence implied in similar controlled conditions. The results provided useful significant information about the place effect; some emic proposition regarding gender also emerged. More studies recommended.</p><br><p></p>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingying Tang ◽  
Shuxia Chen ◽  
Hui Wu ◽  
Honghua Song ◽  
Yongjun Wang ◽  
...  

AbstractCongenital hypothyroidism (CH), a common neonatal endocrine disorder, can result in cognitive deficits if delay in diagnose and treatment. Dentate gyrus (DG) is the severely affected subregion of the hippocampus by the CH, where the dentate granule cells (DGCs) reside in. However, how CH impairs the cognitive function via affecting DGCs and the underlying mechanisms are not fully elucidated. In the present study, the CH model of rat pups was successfully established, and the aberrant dendrite growth of the DGCs and the impaired cognitive behaviors were observed in the offspring. Transcriptome analysis of hippocampal tissues following rat CH successfully identified that calcium/calmodulin-dependent protein kinase IV (CaMKIV) was the prominent regulator involved in mediating deficient growth of DGC dendrites. CaMKIV was shown to be dynamically regulated in the DG subregion of the rats following drug-induced CH. Interference of CaMKIV expression in the primary DGCs significantly reduced the spine density of dendrites, while addition of T3 to the primary DGCs isolated from CH pups could facilitate the spine growth of dendrites. Insights into relevant mechanisms revealed that CH-mediated CaMKIV deficiency resulted in the significant decrease of phosphorylated CREB in DGCs, in association with the abnormality of dendrites. Our results have provided a distinct cell type in hippocampus that is affected by CH, which would be beneficial for the treatment of CH-induced cognitive deficiency.


2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Arrin C. Brooks ◽  
Brandon J. Henderson

While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson’s disease, and later Alzheimer’s disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine’s effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.


2021 ◽  
Vol 22 (15) ◽  
pp. 8276
Author(s):  
Pen-Sen Huang ◽  
Ping-Yen Tsai ◽  
Ling-Yu Yang ◽  
Daniela Lecca ◽  
Weiming Luo ◽  
...  

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


2010 ◽  
Vol 22 (6) ◽  
pp. 1112-1123 ◽  
Author(s):  
R. Nathan Spreng ◽  
Cheryl L. Grady

The ability to rise above the present environment and reflect upon the past, the future, and the minds of others is a fundamentally defining human feature. It has been proposed that these three self-referential processes involve a highly interconnected core set of brain structures known as the default mode network (DMN). The DMN appears to be active when individuals are engaged in stimulus-independent thought. This network is a likely candidate for supporting multiple processes, but this idea has not been tested directly. We used fMRI to examine brain activity during autobiographical remembering, prospection, and theory-of-mind reasoning. Using multivariate analyses, we found a common pattern of neural activation underlying all three processes in the DMN. In addition, autobiographical remembering and prospection engaged midline DMN structures to a greater degree and theory-of-mind reasoning engaged lateral DMN areas. A functional connectivity analysis revealed that activity of a critical node in the DMN, medial prefrontal cortex, was correlated with activity in other regions in the DMN during all three tasks. We conclude that the DMN supports common aspects of these cognitive behaviors involved in simulating an internalized experience.


Toxics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 71 ◽  
Author(s):  
Aminu Imam ◽  
Nafeesah Abdulkareem Sulaiman ◽  
Aboyeji Lukuman Oyewole ◽  
Samson Chengetanai ◽  
Victoria Williams ◽  
...  

The execution of agricultural activities on an industrial scale has led to indiscriminate deposition of toxic xenobiotics, including organophosphates, in the biome. This has led to intoxication characterized by deleterious oxidative and neuronal changes. This study investigated the consequences of oxidative and neurogenic disruptions that follow exposure to a combination of two organophosphates, chlorpyrifos (CPF) and dichlorvos (DDVP), on neuro-cognitive performance and anxiety-like behaviors in rats. Thirty-two adult male Wistar rats (150–170 g) were randomly divided into four groups, orally exposed to normal saline (NS), DDVP (8.8 mg/kg), CPF (14.9 mg/kg), and DDVP + CPF for 14 consecutive days. On day 10 of exposure, anxiety-like behavior and amygdala-dependent fear learning were assessed using open field and elevated plus maze paradigms, respectively, while spatial working memory was assessed on day 14 in the Morris water maze paradigm, following three training trials on days 11, 12, and 13. On day 15, the rats were euthanized, and their brains excised, with the hippocampus and amygdala removed. Five of these samples were homogenized and centrifuged to analyze nitric oxide (NO) metabolites, total reactive oxygen species (ROS), and acetylcholinesterase (AChE) activity, and the other three were processed for histology (cresyl violet stain) and proliferative markers (Ki67 immunohistochemistry). Marked (p ≤0.05) loss in body weight, AChE depletion, and overproduction of both NO and ROS were observed after repeated exposure to individual and combined doses of CPF and DDVP. Insults from DDVP exposure appeared more severe owing to the observed greater losses in the body weights of exposed rats. There was also a significant (p ≤0.05) effect on the cognitive behaviors recorded from the exposed rats, and these deficits were related to the oxidative damage and neurogenic cell loss in the hippocampus and the amygdala of the exposed rats. Taken together, these results provided an insight that oxidative and neurogenic damage are central to the severity of neuro-cognitive dysfunction and increased anxiety-like behaviors that follow organophosphate poisoning.


Author(s):  
J. M. Taylor ◽  
V. Raskin

This paper deals with a contribution of computational analysis of verbal humor to natural language cognition. After a brief introduction to the growing area of computational humor and of its roots in humor theories, it describes and compares the results of a human-subject and computer experiment. The specific interest is to compare how well the computer, equipped with the resources and methodologies of the Ontological Semantic Technology, a comprehensive meaning access approach to natural language processing, can model several aspects of the cognitive behaviors of humans processing jokes from the Internet. The paper, sharing several important premises with cognitive informatics, is meant as a direct contribution to this rapidly developing transdisciplinary field, and as such, it bears on cognitive computing as well, especially at the level of implementation of computational humor in non-toy systems and the relationship to human cognitive processes of understanding and producing humor.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kellen Christina Malheiros Borges ◽  
Hisao Nishijo ◽  
Tales Alexandre Aversi-Ferreira ◽  
Jussara Rocha Ferreira ◽  
Leonardo Ferreira Caixeta

Previous studies suggest that the complexity of fiber connections in the brain plays a key role in the evolutionary process of the primate brain and behaviors. The patterns of brain fiber systems have been studied in detail in many nonhuman primates, but not inSapajussp. Behavioral studies indicated thatSapajussp. (bearded capuchins) show highly cognitive behaviors such as tool use comparable to those in other nonhuman primates. To compare the brain fiber systems in capuchins with those in other nonhuman primates and humans, the intrahemispheric fibers systems in 24 cerebral hemispheres ofSapajuswere dissected by a freezing-thawing procedure. Dissection of the hemispheres in lateral view indicated short arcuate fibers, uncinate fasciculus, and inferior longitudinal fasciculus, while that in a medial view indicated short arcuate fibers, the cingulum united with the superior longitudinal fasciculus, and inferior longitudinal fasciculus. The results showed that the fiber systems inSapajusare comparable to those in rhesus and humans, except for a lack of independent superior longitudinal fasciculus and cingulum inSapajus.


Sign in / Sign up

Export Citation Format

Share Document