Excellent oil/water separation performance of poly(styrene‐ alt ‐maleic anhydride)/fluorocarbon surfactant membrane filter with functionalized multiwalled carbon nanotubes

2020 ◽  
Vol 137 (34) ◽  
pp. 48977
Author(s):  
Ya‐Ni Guo ◽  
Li‐Yun Liang ◽  
Shi‐Xuan Bao ◽  
Fei‐Peng Du ◽  
Xuan Wen
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2431
Author(s):  
Wen Zhang ◽  
Juanjuan Wang ◽  
Xue Han ◽  
Lele Li ◽  
Enping Liu ◽  
...  

In this paper, effective separation of oil from both immiscible oil–water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil–water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil–water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


Sign in / Sign up

Export Citation Format

Share Document