Bactericidal effect of cationic hydrogels prepared from hydrophilic polymers

2020 ◽  
Vol 137 (48) ◽  
pp. 49583
Author(s):  
Yuki Shibata ◽  
Takayuki Kurokawa ◽  
Tomoyasu Aizawa ◽  
Jian Ping Gong
2015 ◽  
Vol 2 (2) ◽  
pp. 26-31 ◽  
Author(s):  
A. Paliy ◽  
A. Zavgorodniy ◽  
B. Stegniy ◽  
A. Gerilovych

Due to the absence of elaborated effi cient means for specifi c prevention of bovine tuberculosis, it is ex- tremely important to detect and eliminate the source of infection and to take veterinary and sanitary preven- tive measures. Here the critical role is attributed to disinfection, which breaks the epizootic chain due to the elimination of pathogenic microorganisms in the environment and involves the application of disinfectants of different chemical groups. Aim. To study the tuberculocidal properties of new disinfectants DZPT-2 and FAG against atypical mycobacteria Mycobacterium fortitum and a TB agent Mycobacterium bovis. Methods. The bacteriological and molecular-genetic methods were used. Results. It was determined that DZPT-2 prepara- tion has bactericidal effect on M. fortuitum when used in the concentration of 2.0 % of the active ingredient (AI) when exposed for 5–24 h, while disinfectant FAG has a bactericidal effect in the concentration of 2.0 % when exposed for 24 h. Disinfectant DZPT-2 in the concentration of 2.0 % of the AI, when exposed for 5–24 h, and FAG preparation in the concentration of 2.0 %, when exposed for 24 h, and with the norm of consump- tion rate of 1 cubic decimeter per 1 square meter disinfect the test-objects (batiste, wood, glazed tile, metal, glass), contaminated with the TB agent M. bovis. Conclusions. Disinfecting preparations of DZPT-2 in the concentration of 2.0 % of AI when exposed for 5 h and FAG in the concentration of 2.0 % when exposed for 24 h may be used in the complex of veterinary and sanitary measures to prevent and control TB of farm ani- mals. The possibility of using the polymerase chain reaction as an additional method of estimating tuberculo- cide activity of disinfectants was proven.


2002 ◽  
Vol 14 (1) ◽  
Author(s):  
Robin C. Anderson ◽  
Todd R. Callaway ◽  
Timothy J. Anderson ◽  
Leon F. Kubena ◽  
Nancy K. Keith ◽  
...  

Author(s):  
Virginia Fuochi ◽  
Massimo Caruso ◽  
Rosalia Emma ◽  
Aldo Stivala ◽  
Riccardo Polosa ◽  
...  

Background: The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. Objective: The effect of the combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. Methods: Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. Results: All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. A higher activity was correlated to the presence of flavors and nicotine. Discussion: In most cases the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. Conclusion: Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.


2019 ◽  
Vol 20 (2) ◽  
pp. 633-643
Author(s):  
Xiaopeng Qi ◽  
Junwei Chen ◽  
Qian Li ◽  
Hui Yang ◽  
Honghui Jiang ◽  
...  

Abstract There is an urgent need for an effective and long-lasting ceramic filter for point-of-use water treatment. In this study, silver-diatomite nanocomposite ceramic filters were developed by an easy and effective method. The ceramic filters have a three-dimensional interconnected pore structure and porosity of 50.85%. Characterizations of the silver-diatomite nanocomposite ceramic filters were performed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Silver nanoparticles were confirmed to be formed in situ in the ceramic filter. The highest silver concentration in water was 0.24 μg/L and 2.1 μg/L in short- and long-term experiments, indicating very low silver-release properties of silver-diatomite nanocomposite ceramic filter. The nanocomposite ceramics show strong bactericidal activity. When contact time with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of 105 colony forming units (CFU)/mL exceeded 3 h, the bactericidal rates of the four different silver content ceramics against E. coli and S. aureus were all 100%. Strong bactericidal effect against E. coli with initial concentration of 109 CFU/mL were also observed in ceramic newly obtained and ceramic immersed in water for 270 days, demonstrating its high stability. The silver-diatomite nanocomposite ceramic filters could be a promising candidate for point-of-use water treatment.


2019 ◽  
Vol 21 (37) ◽  
pp. 20999-21006
Author(s):  
Zhanna Evgrafova ◽  
Bruno Voigt ◽  
Andreas H. Roos ◽  
Gerd Hause ◽  
Dariush Hinderberger ◽  
...  

Careful balance of hydrophilicity of precisely engineered polymers alters aggregation of the amyloidogenic protein Aβ1–40.


Sign in / Sign up

Export Citation Format

Share Document